Abstract:
With the development of automated fiber placement technology, it is possible to lay complex curves which greatly increase the freedom of angle design. In this paper, with the purpose of improving the dynamic characteristics of composite laminates, the vibration damping performance of variable angle laminates was studied and analyzed. Firstly, the free attenuation experiment was carried out to study the relationship between the change of fiber angle and damping ratio of variable angle laminates. Then, the vibration response of variable angle laminates under random excitation was studied by random experiments. The transition function (TF) at the formant and the root mean square (RMS) of the acceleration at the pick-up point of vibration were used to evaluate the effect of vibration reduction. The results show that the damping ratio of laminates is the largest when the fiber angle is ±<45|60> and the least when the fiber angle is ±<73|88>. Based on the vibration reduction evaluation index of RMS, the vibration reduction performance of ±<45|60> sandwich laminate is 27.13% higher than the traditional linear laminate; Based on the formant vibration reduction evaluation index of TF, the vibration reduction effect of different formants is obviously different with the fiber change. The results show that the vibration reduction performance of the variable angle laminates is obviously better than that of the traditional linear laminates. The relevant experimental results will be helpful for the design and optimization of vibration reduction of variable angle laminates.