Abstract:
Fluorinated hyperbranched polyurethane (FHPU) was first prepared, and then combined with Prussian blue (PB) nanoparticles with photothermal conversion function to obtain PB/FHPU superhydrophobic anti-icing composite with photothermal conversion function coating material. The structure and performance of FHPU and PB/FHPU superhydrophobic anti-icing composite coating materials were analyzed by FTIR, TGA and DSC tests, and the excellent photothermal performance of the composite coating materials was proved through the photothermal conversion experiment; The effect of the amount of PB nanoparticles added on the surface properties and photothermal conversion performance of composite coating materials was deeply explored. The results show that when the PB mass accounts for 13% of the FHPU, the composite coating material can form a composite coating with a micro-nano structure. The maximum contact angle of the coating surface is 157° and the rolling angle is 1.8°. At the same time, the temperature of the coating can rise by 78.1°C within 10 s under 808 nm laser irradiation, and the maximum temperature reaches to 148.7°C. Therefore, the light-to-heat conversion functional superhydrophobic anti-icing composite coating material has good hydrophobic and anti-icing properties.