新型含硅聚芳炔树脂基透波复合材料的制备与性能

Preparation and properties of novel silicon-containing polyarylacetylene resin based wave-transparent composite

  • 摘要: 为满足工程领域对耐高温树脂基透波复合材料的需求,研究石英纤维(QF)增强新型含硅改性聚芳炔(PSA)树脂基复合材料(QF/PSA)的制备方法及其性能。首先对树脂的黏度进行分析,确定了树脂在不同温度和时间下的黏度变化预测模型,适宜的树脂传递模塑工艺(Resin Transfer Molding, RTM)注胶温度在70~100℃范围;对树脂固化过程中的放热量、红外光谱和流变特性进行分析,确定了树脂的固化温度和固化过程,在250℃可以实现树脂的固化。基于上述分析进行了复合材料的高质量制备,并进一步对复合材料的微观形貌、力学性能、热膨胀性能、介电性能和耐高温性能进行分析和试验验证。材料的玻璃化转变温度(Tg)大于500℃,5%热失重温度(T5%)高达625℃,石英灯试验表明耐高温能力可达520℃/1000 s;介电常数稳定在3.1~3.2,介电损耗稳定在0.003以下;力学性能满足功能材料的使用要求。上述研究表明,该新型含硅聚芳炔树脂基透波复合材料在航空航天领域具有重要的应用价值。

     

    Abstract: In order to satisfy the requirement of high-temperature resistant wave-transparent composite in project field, a quartz fiber (QF) reinforced novel silicon-containing polyarylacetylene (PSA) resin based composite (QF/PSA) was researched and characterized. Firstly, viscosity prediction model of different temperature and time was established based on the viscosity-time curves of the resin, the model indicates that the resin can be injected between 70~100℃ for resin transfer molding (RTM) process. The curing heat, FT-IR spectra and rheological behavior of the resin were analysized, then the curing temperature and process were revealed. The results show that the resin can be curved at 250℃. Based on the above research, the high-quality preparation of the composite was achieved. Furthermore, the micro-morphology, mechanical properties, thermal expansion performance, dielectric properties as well as high temperature resistant performance of the composite were investigated and verified by experiments. The composite exhibits excellent thermal stability with Tg above 500℃ and T5% up to 625℃, and quartz lamp experiment further indicates that the high temperature resistant ability is up to 520℃/1000 s. The dielectric constant is 3.1~3.2 and dielectric loss is less than 0.003. In addition, the mechanical property is enough for functional composite. The above research indicates that the novel silicon-containing polyarylacetylene resin based wave-transparent composite has high potentials in the fields of aeronautics and astronautics.

     

/

返回文章
返回