Loading [MathJax]/jax/output/SVG/jax.js

橡胶/混凝土盐冻循环后性能劣化及微观结构

姚韦靖, 刘雨姗, 王婷雅, 庞建勇

姚韦靖, 刘雨姗, 王婷雅, 等. 橡胶/混凝土盐冻循环后性能劣化及微观结构[J]. 复合材料学报, 2021, 38(12): 4294-4304. DOI: 10.13801/j.cnki.fhclxb.20210202.005
引用本文: 姚韦靖, 刘雨姗, 王婷雅, 等. 橡胶/混凝土盐冻循环后性能劣化及微观结构[J]. 复合材料学报, 2021, 38(12): 4294-4304. DOI: 10.13801/j.cnki.fhclxb.20210202.005
YAO Weijing, LIU Yushan, WANG Tingya, et al. Performance degradation and microscopic structure of rubber/concrete after salt freeze-thaw cycles[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4294-4304. DOI: 10.13801/j.cnki.fhclxb.20210202.005
Citation: YAO Weijing, LIU Yushan, WANG Tingya, et al. Performance degradation and microscopic structure of rubber/concrete after salt freeze-thaw cycles[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4294-4304. DOI: 10.13801/j.cnki.fhclxb.20210202.005

橡胶/混凝土盐冻循环后性能劣化及微观结构

基金项目: 安徽省高等学校自然科学研究重点项目(KJ2020A0297);中国博士后科学基金面上资助(2020M681974);安徽理工大学校级重点项目(QN2019115)
详细信息
    通讯作者:

    庞建勇,博士,教授,博士生导师,研究方向为水泥混凝土类材料  E-mail:pangjyong@163.com

  • 中图分类号: TU528

Performance degradation and microscopic structure of rubber/concrete after salt freeze-thaw cycles

  • 摘要: 制备普通混凝土(Normal concrete,NC)和橡胶/混凝土基体(Rubber/NC),研究盐冻循环60次内,表观现象、剥落量、抗压强度损失等性能指标劣化过程,采用超声波无损检测法评价混凝土盐冻循环破坏前后超声参数变化,建立相对波速、损伤度与抗压强度的关系,利用SEM观察盐冻循环损伤前后试件微结构变化。结果表明:随盐冻循环次数增加,混凝土试件表面剥蚀愈显著,剥落量增加,内部损伤、强度损失逐渐加剧,超声参数与抗压强度具有密切相关性;混凝土经历盐冻破坏后,内部结构呈疏松絮状,孔隙、裂纹愈加显现,密实度下降,造成宏观力学性能劣化。但弹性橡胶细集料掺入后有效缓解结冰压引起的内部开裂和孔隙扩大,各阶段橡胶/混凝土基体劣化程度均优于普通混凝土,以橡胶掺量 (与胶凝材料质量比) 10% (10%Rubber/NC)各性能指标最优,经历60次盐冻循环后,普通混凝土抗压强度损失率为58.5%,10%Rubber/NC抗压强度损失率为48.0%。
    Abstract: The normal concrete (NC) and rubber/NC were prepared. The performance degradation process of concrete specimens within 60 salt freeze-thaw cycles was studied, which includes changes of apparent phenomenon, flaking amount and compressive strength loss. The adaptation of ultrasonic test in evaluating the performance of concrete after salt freeze-thaw cycles was investigated. The relationships between relative velocity, damage degree and compressive strength were comparative analyzed. The micro-structure changes of concrete specimens after salt freeze-thaw cycles were observed by SEM. The results show that the surface erosion of concrete becomes more obvious, the flaking amount, internal damage and strength loss gradually increase, with the increasing number of salt freeze-thaw cycles. It has good correlation between the ultrasonic parameters and compressive strength. After the concrete undergoing salt freeze-thaw damage, the internal structure becomes loose and flocculent, increasing pores and cracks appear, and the density decreases, which results in deterioration of macro-mechanical properties. However, the deterioration degree of rubber/concrete is better than that of normal concrete at all cycle stages, because the elastic rubber fine aggregate can effectively alleviate internal cracking and pore expansion caused by icing pressure. The rubber/concrete with 10% rubber content (mass ratio to cementitious material) (10%Rubber/NC) has the best performance indicators. After 60 salt freeze-thaw cycles, the compressive strength loss rates of normal concrete and 10%Rubber/NC are 58.5% and 48.0%, respectively.
  • 图  1   橡胶实拍 (a) 及微观形貌 (b)

    Figure  1.   Picture (a) and microscopic structure (b) of rubber

    图  2   混凝土盐冻试验示意图

    Figure  2.   Schematic diagram of concrete salt freezing test

    图  3   混凝土盐冻循环表观现象

    Figure  3.   Apparent phenomenon of concrete after salt freezing cycles

    图  4   混凝土盐冻循环剥落量变化

    Figure  4.   Flaking amount change of concrete after salt freezing cycles

    图  5   混凝土盐冻循环次数与超声参数的关系

    Figure  5.   Relationship between ultrasound parameters and number of salt freezing cycles

    图  6   混凝土盐冻循环相对抗压强度变化

    Figure  6.   Relative compressive strength change of concrete after salt freezing cycles

    图  7   混凝土盐冻循环超声参数与抗压强度的拟合关系

    Figure  7.   Fitted relationship between ultrasound parameters and compressive strength of concrete after salt freezing cycle

    图  8   普通混凝土(NC)盐冻循环微观形貌

    Figure  8.   Microscopic structure of normal concrete (NC) after salt freezing-thaw cycles

    图  9   10%Rubber/NC的微观形貌

    Figure  9.   Microscopic structure of 10%Rubber/NC

    图  10   10%Rubber/NC盐冻循环微观形貌

    Figure  10.   Microscopic structures of 10%Rubber/NC after salt freezing-thaw cycles

    表  1   P·C 42.5级水泥技术参数

    Table  1   Technical parameters of P·C 42.5 cement

    Fineness/
    (m2·kg−1)
    Ignition loss/%Water requirement of
    standard consistency/%
    Setting time/minCompressive strength/MPaStability
    InitialFinial3 days28 days
    342 3.5 25.9 165 220 29.9 49.75 Conformity
    下载: 导出CSV

    表  2   粉煤灰化学成分组成

    Table  2   Chemical composition of fly ash

    CompositionSiO2Al2O3Fe2O3CaOMgONa2O
    Content/wt% 53.26 34.72 4.07 2.47 0.39 1.90
    下载: 导出CSV

    表  3   混凝土配合比

    Table  3   Concrete mixture ratio kg·m−3

    Concrete numberCementing materialFine aggregateGravelWaterWater reducer
    CementFly ashSandRubber
    NC 310 50 791.0 0 1115 150 3.4
    5%Rubber/NC 310 50 769.4 18 1115 150 3.4
    10%Rubber/NC 310 50 747.8 36 1115 150 3.4
    15%Rubber/NC 310 50 726.2 54 1115 150 3.4
    20%Rubber/NC 310 50 704.6 72 1115 150 3.4
    Notes: NC—Normal concrete; 5%Rubber/NC, 10%Rubber/NC, 15%Rubber/NC and 20%Rubber/NC—Rubber/NC with rubber content (mass ratio to cementitious material) of 5%, 10%, 15% and 20%, respectively.
    下载: 导出CSV

    表  4   混凝土性能测试结果

    Table  4   Concrete performance test results

    Concrete
    number
    Workability28 days apparent
    density/(kg·m−3)
    28 days compressive
    strength/MPa
    28 days tensile
    strength/MPa
    Slump/mmSlump flow/mm
    NC 170 340 2423 40.68 4.52
    5%Rubber/NC 195 365 2412 36.91 4.05
    10%Rubber/NC 215 390 2403 32.69 3.78
    15%Rubber/NC 240 425 2398 29.38 3.25
    20%Rubber/NC 265 460 2387 26.06 2.89
    下载: 导出CSV

    表  5   混凝土盐冻循环后超声参数与抗压强度损失拟合结果

    Table  5   Fitting results of ultrasound parameters and compressive strength of concrete after salt freezing cycle

    Concrete numberUltrasound parameterFitting formulaR2
    NC Relative velocity VR FR=0.15e2.389VR0.416 0.98
    Damage degree D FR=0.377lnD+0.004 0.93
    5%Rubber/NC Relative velocity VR FR=0.001e6.629VR+0.251 0.98
    Damage degree D FR=0.272lnD+0.088 0.97
    10%Rubber/NC Relative velocity VR FR=0.0002e7.909VR+0.382 0.99
    Damage degree D FR=0.127lnD+0.357 0.95
    15%Rubber/NC Relative velocity VR FR=0.634e1.541VR1.724 0.96
    Damage degree D FR=0.380lnD0.111 0.93
    20%Rubber/NC Relative velocity VR FR=0.077e2.875VR0.194 0.99
    Damage degree D FR=0.364lnD+0.010 0.98
    Note: FR—Relative compressive strength.
    下载: 导出CSV
  • [1]

    SHU Xiang, HUANG Baoshan. Recycling of waste tire rubber in asphalt and Portland cement concrete: An overreview[J]. Construction and Building Materials,2014,67:217-224. DOI: 10.1016/j.conbuildmat.2013.11.027

    [2] 赵秋红, 王菲, 朱涵. 结构用橡胶集料混凝土受压全曲线试验及其本构模型[J]. 复合材料学报, 2018, 35(8):2222-2234.

    ZHAO Qiuhong, WANG Fei, ZHU Han. Compressive test on curves and constitutive model of crumb rubber concrete for structure purposes[J]. Acta Material Compositae Sinica,2018,35(8):2222-2234(in Chinese).

    [3] 杨若冲, 谈至明, 黄晓明, 等. 掺聚合物的橡胶混凝土路用性能研究[J]. 中国公路学报, 2010, 23(4):15-19. DOI: 10.3969/j.issn.1001-7372.2010.04.003

    YANG Ruochong, TAN Zhiming, HUANG Xiaoming, et al. Research of performance of rubberized concrete incorporated with polymer[J]. China Journal of Highway Transport,2010,23(4):15-19(in Chinese). DOI: 10.3969/j.issn.1001-7372.2010.04.003

    [4] 刘艳荣, 葛树奎, 韩瑜. 废旧轮胎橡胶粉改性水泥基材料研究概况[J]. 材料导报, 2014, 28(24):422-426.

    LIU Yanrong, GE Shukui, HAN Yu. Research progress of scrap rubber powder modified cement-based compo-sites[J]. Materials Reports,2014,28(24):422-426(in Chinese).

    [5] 杨全兵. 混凝土盐冻破坏——机理、材料设计与防治措施[M]. 北京: 中国建筑工业出版社, 2012.

    YANG Quanbing. Concrete salt freeze damage—Mechanism, material design and prevention measures[M]. Beijing: China Architecture & Building Press, 2012(in Chinese).

    [6]

    ALAN Richardson, KATHRYN Coventry, VIKKI Edmondson, et al. Crumb rubber used in concrete to provide freeze-thaw protection (optimal particle size)[J]. Journal of Cleaner Production,2016,112:599-606. DOI: 10.1016/j.jclepro.2015.08.028

    [7]

    RICHARDSON A E, COVENTRY K A, WARD G. Freeze/thaw protection of concrete with optimum rubber crumb content[J]. Journal of Cleaner Production,2012,23:96-103. DOI: 10.1016/j.jclepro.2011.10.013

    [8] 徐金花, 冯夏庭, 陈四利. 橡胶集料对混凝土抗冻性的影响[J]. 东北大学学报(自然科学版), 2012, 33(6):895-898. DOI: 10.12068/j.issn.1005-3026.2012.06.033

    XU Jinhua, FENG Xiating, CHEN Sili. Effects of rubber aggregate on the frost resistance of concrete[J]. Journal of Northeastern University (Natural Science),2012,33(6):895-898(in Chinese). DOI: 10.12068/j.issn.1005-3026.2012.06.033

    [9]

    ALSAIF A, BERNAL S A, GUADAGNINI M, et al. Freeze-thaw resistance of steel fibre reinforced rubberized concrete[J]. Construction and Building Materials,2019,195:450-458. DOI: 10.1016/j.conbuildmat.2018.11.103

    [10]

    LIU Hanbing, LUO Guobao, GONG Yafeng, et al. Mechanical properties, permeability, and freeze-thaw resistance of previous concrete modified by waste crumb rubbers[J]. Applied Science,2018,8(8):1217.

    [11] 杨全兵. 混凝土盐冻破坏机理(Ⅱ): 冻融饱水度和结冰压[J]. 建筑材料学报, 2012, 15(6):741-746. DOI: 10.3969/j.issn.1007-9629.2012.06.002

    YANG Quanbing. One of mechanisms on the deicer-frost scaling of concrete (Ⅱ): Degree of saturation and ice-formation pressure during freezing-thawing cycles[J]. Journal of Building Materials,2012,15(6):741-746(in Chinese). DOI: 10.3969/j.issn.1007-9629.2012.06.002

    [12] 杨全兵. NaCl对结冰膨胀率和混凝土溶液吸入量的影响[J]. 建筑材料学报, 2007, 10(3):266-270. DOI: 10.3969/j.issn.1007-9629.2007.03.003

    YANG Quanbing. Effects of NaCl concentration on ice-formation expansion and the solution absorption by concrete[J]. Journal of Building Materials,2007,10(3):266-270(in Chinese). DOI: 10.3969/j.issn.1007-9629.2007.03.003

    [13] 万小梅, 张同波, 赵铁军, 等. 盐冻环境下混凝土的微结构和氯离子渗透性[J]. 建筑材料学报, 2015, 18(4):633-639. DOI: 10.3969/j.issn.1007-9629.2015.04.017

    WAN Xiaomei, ZHANG Tongbo, ZHAO Tiejun, et al. Microstructure and chloride permeability of concretes under salt frost[J]. Journal of Building Materials,2015,18(4):633-639(in Chinese). DOI: 10.3969/j.issn.1007-9629.2015.04.017

    [14]

    RHIM H C, KIM D Y, CHO C S, et al. Effect of steel plates on estimation of the compressive strength of concrete via ultrasonic testing[J]. Materials,2020,13(4):887.

    [15] 姚韦靖, 庞建勇. 玻化微珠保温混凝土高温后性能劣化及微观结构[J]. 复合材料学报, 2019, 36(12):2932-2941.

    YAO Weijing, PANG Jianyong. Performance degradation and microscopic structure of glazed hollow bead insulation normal concrete after exposure to high temperature[J]. Acta Materiae Compositae Sinca,2019,36(12):2932-2941(in Chinese).

    [16]

    PHAM N P, TOUMI A, TURATSINZE A. Effect of an enhanced rubber-cement matrix interface on freeze-thaw resistance of the cement-based composite[J]. Construction and Building Materials,2019,2017:528-534.

    [17] 王婷雅, 庞建勇, 黄鑫, 等. 不同粒径的橡胶混凝土低温抗压强度试验研究[J]. 硅酸盐通报, 2019, 38(7):2308-2313.

    WANG Tingya, PANG Jianyong, HUANG Xin, et al. Experimental research on compressive strength of rubber concrete with different particle sizes at low temperature[J]. Bulletin of the Chinese Ceramic Society,2019,38(7):2308-2313(in Chinese).

    [18] 庞建勇, 陈宇, 黄鑫, 等. 高应力等幅循环加载对橡胶混凝土力学及变形特性的影响[J]. 长江科学院院报, 2020, 37(10):142-148. DOI: 10.11988/ckyyb.2019087548

    PANG Jianyong, CHEN Yu, HUANG Xin, et al. Impact of equal-amplitude cyclic high stress loading on mechanical and deformation properties of rubber concrete[J]. Journal of Yangtze River Scientific Research Institute,2020,37(10):142-148(in Chinese). DOI: 10.11988/ckyyb.2019087548

    [19]

    ZHU Ruonan, PANG Jianyong, WANG Tingya, et al. Experimental research on chloride erosion resistance of rubber concrete[J]. Advance in Civil Engineering,2020(6):1-10.

    [20] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Architectural & Building Press, 2011(in Chinese).

    [21] 中华人民共和国国家质量监督检验检疫总局. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2016.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016[S]. Beijing: China Architectural & Building Press, 2016 (in Chinese).

    [22] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).

    [23]

    GUPTA T, CHAUDHARY S, SHARMA R K. Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate[J]. Construction and Building Materials,2014,73:562-574. DOI: 10.1016/j.conbuildmat.2014.09.102

    [24] 严捍东, 陈秀峰. 橡胶集料及其对水泥基材料物理力学性能的影响[J]. 材料导报, 2007, 21(11):104-106, 114. DOI: 10.3321/j.issn:1005-023X.2007.11.026

    YAN Handong, CHEN Xiufeng. Review of rubber aggregate and its effects on physical and mechanical properties of cement based materials[J]. Materials Reports,2007,21(11):104-106, 114(in Chinese). DOI: 10.3321/j.issn:1005-023X.2007.11.026

    [25] 吴鹏程, 杨全兵, 徐俊辉, 等. 低危害除冰盐对水泥混凝土盐冻破坏的影响及其机理[J]. 建筑材料学报, 2020, 23(2):317-321, 327.

    WU Pengcheng, YANG Quanbing, XU Junhui, et al. Effects of a low-harm deicing salt on the salt-frost scaling of concrete and its mechanism[J]. Journal of Building Materials,2020,23(2):317-321, 327(in Chinese).

    [26]

    GONG Jianqing, DENG Guoqi, SHAN Bo. Performance evaluation of RPC exposed to high temperature combining ultrasonic test: A case study[J]. Construction and Building Materials,2017,157:194-202. DOI: 10.1016/j.conbuildmat.2017.08.140

    [27]

    YAO Weijing, PANG Jianyong, LIU Yushan. Performance degradation and microscopic analysis of lightweight aggregate concrete after exposure to high temperature[J]. Materials,2020,13(7):1566.

    [28] 龚建清, 邓国旗, 单波. 活性粉末混凝土高温后超声研究及微观分析[J]. 湖南大学学报(自然科学版), 2018, 45(1):68-76.

    GONG Jianqing, DENG Guoqi, SHAN Bo. Ultrasonic test and microscopic analysis of reactive powder concrete exposed to high temperature[J]. Journal of Hunan University (Natural Science),2018,45(1):68-76(in Chinese).

    [29] 杨全兵. 混凝土盐冻破坏机理(Ⅰ)—毛细管饱和水度和结冰压[J]. 建筑材料学报, 2007, 10(5):522-527. DOI: 10.3969/j.issn.1007-9629.2007.05.004

    YANG Quanbing. Mechanisms of deicer frost scaling of concrete (Ⅰ)—Capillary-uptake degree of saturation and ice-formation pressure[J]. Journal of Building Materials,2007,10(5):522-527(in Chinese). DOI: 10.3969/j.issn.1007-9629.2007.05.004

    [30]

    HUA Linxin, XIAO Feipeng, LI Yitao, et al. A potential mechanism of rubberized cement under freeze-thaw cycle[J]. Construction and Building Materials,2020,252:119054. DOI: 10.1016/j.conbuildmat.2020.119054

    [31] 张亚梅, 赵志远, 陈胜霞, 等. 橡胶粉对混凝土在水和NaCl溶液中抗冻性的影响[J]. 东南大学学报(自然科学版), 2006, 36(S2):248-252.

    ZHANG Yamei, ZHAO Zhiyuan, CHEN Shengxia, et al. Impact of rubber powder of frost resistance of concrete in water and NaCl solution[J]. Journal of Southeast University (Natural Science Edition),2006,36(S2):248-252(in Chinese).

  • 期刊类型引用(8)

    1. 丁能鑫,侯夫庆,杨会康,张春辉. 石英纤维的表面改性及分散特性研究. 中国造纸. 2023(06): 56-63 . 百度学术
    2. 杨娜,苏韬,黄锴荻,王文俊. 通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能. 复合材料学报. 2023(09): 5002-5010 . 本站查看
    3. 束长朋,王茂源,周权,宋宁,倪礼忠. 苯并噁嗪-氨基稀释剂改性硅炔杂化树脂及其复合材料性能. 复合材料学报. 2020(11): 2718-2725 . 本站查看
    4. 成滨,扈艳红,邓诗峰,杜磊,周燕,杨藤,崔方旭. 一种含腈基的硅烷偶联剂改性石英纤维/含硅芳炔复合材料. 复合材料学报. 2019(03): 545-554 . 本站查看
    5. 王卓,王欢,任鹏刚,王明存. 硅氧烷杂化苯并恶嗪及其耐高温复合材料. 热固性树脂. 2019(02): 13-20 . 百度学术
    6. 杨海荟,崔丽平. 新型含醚酰亚胺端炔硅烷偶联剂的合成研究. 广东化工. 2019(18): 69-71+78 . 百度学术
    7. 宋来福,杨彩云. 复合材料界面理论及石英纤维表面处理与改性方法研究进展. 纺织科学与工程学报. 2018(01): 171-176 . 百度学术
    8. 杨海荟,扈艳红,杜磊,顾渊博,张芳芳. 新型硅烷偶联剂对石英纤维/含硅芳炔复合材料界面增强增韧改性. 玻璃钢/复合材料. 2016(08): 13-21 . 百度学术

    其他类型引用(4)

图(10)  /  表(5)
计量
  • 文章访问数:  1285
  • HTML全文浏览量:  655
  • PDF下载量:  81
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-12-06
  • 录用日期:  2021-01-17
  • 网络出版日期:  2021-02-01
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回