复合材料机翼结构热校形工艺实验及数值模拟

Simulation and experimental studies of hot sizing process for composite wing structures

  • 摘要: 纤维增强树脂基复合材料机翼结构复杂,往往存在明显的固化变形现象,严重影响机翼的装配和气动特性。本研究目的在于建立大型复合材料复杂结构的热校形工艺方法,解决复合材料机翼制造的变形控制问题。针对复合材料机翼的固化变形特点,设计了新的热校形夹具工装。在评价复合材料应力松弛特性的基础上,建立了大型复合材料机翼结构热校形工艺的有限元模拟方法,实现了对热校形后机翼结构残余变形的有效预报,分析了校形载荷、校形温度等关键工艺参数对校形效果的影响规律,形成优化的热校形工艺方案。模拟及实验结果表明,复合材料热校形工艺可以适用于大型复杂结构,复合材料机翼89.5%的固化变形被热校形工艺的残余变形抵消,达到机翼的装配和气动外形要求。

     

    Abstract: Obvious process induced distortions usually take place in complex wing structures made of polymer-matrix composites. This leads to problems in the assembly and aerodynamics performance of composite wings. The objective of the present work is to develop a hot sizing process for large and complex composite structures, to solve the distortion control problem of composite wings. New sizing tools were designed according to the process induced distortions of wings, to carry out hot sizing experiments. A finite element simulation method was built up to predict the final shape of wings after hot sizing, based on characterizing the stress relaxation property of composites. The effects of process parameters were analyzed including temperature, sizing loads, et al, in order to optimize the hot sizing scheme. The simulation and experiments results show that hot sizing process is valid for large and complex composite structures. 89.5% of the process induced distortions of the composite wing structures is compensated by the hot sizing process, meeting the geometry requirements for assembly and aerodynamic characteristics.

     

/

返回文章
返回