拟薄水铝石改性环氧树脂复合材料的制备与性能

刘国隆, 周宏, 张宏达, 葛静

刘国隆, 周宏, 张宏达, 等. 拟薄水铝石改性环氧树脂复合材料的制备与性能[J]. 复合材料学报, 2021, 38(10): 3237-3244. DOI: 10.13801/j.cnki.fhclxb.20210131.001
引用本文: 刘国隆, 周宏, 张宏达, 等. 拟薄水铝石改性环氧树脂复合材料的制备与性能[J]. 复合材料学报, 2021, 38(10): 3237-3244. DOI: 10.13801/j.cnki.fhclxb.20210131.001
LIU Guolong, ZHOU Hong, ZHANG Hongda, et al. Preparation and properties of boehmite modified epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3237-3244. DOI: 10.13801/j.cnki.fhclxb.20210131.001
Citation: LIU Guolong, ZHOU Hong, ZHANG Hongda, et al. Preparation and properties of boehmite modified epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3237-3244. DOI: 10.13801/j.cnki.fhclxb.20210131.001

拟薄水铝石改性环氧树脂复合材料的制备与性能

基金项目: 黑龙江省自然科学基金(E2015058)
详细信息
    通讯作者:

    周宏,博士,教授,硕士生导师,研究方向为纳米复合电介质材料  E-mail:hongzhou@hrbust.edu.cn

  • 中图分类号: TB332

Preparation and properties of boehmite modified epoxy resin composites

  • 摘要: 采用水热合成法制备拟薄水铝石(AlOOH)纳米棒,以3-氨基丙基三乙氧基硅烷(APTES)为表面改性剂,制得mAlOOH,以环氧树脂(Epoxy,EP)为基体,制备AlOOH/EP和mAlOOH/EP复合材料。研究AlOOH和mAlOOH的填充量对AlOOH/EP及mAlOOH/EP复合材料性能的影响。结果表明,mAlOOH明显提高了mAlOOH/EP复合材料的力学性能。mAlOOH的填充量为4wt%时,mAlOOH/EP复合材料的冲击强度和弯曲强度分别比聚合物基体分别提高了259%和44%;填充量不超过5wt%时,mAlOOH/EP的介电常数与介电损耗均略低于纯环氧树脂。当添加量为3wt%时,mAlOOH/EP具有最低的介电常数和介电损耗及最高的玻璃化转变温度(123℃)。
    Abstract: Boehmite (AlOOH) nanorods were prepared by hydrothermal method and modified by 3-aminopropyltriethoxysilane (APTES) to obtain modified boehmite (mAlOOH). Then, AlOOH/epoxy (EP) and mAlOOH/EP composites were fabricated by using the EP as the matrix. The effects of the contents of AlOOH and mAlOOH on the properties of the AlOOH/EP and mAlOOH/EP composites were systematically studied. The results show that the mechanics properties of mAlOOH/EP composites are obviously improved by mAlOOH. The impact strength and flexural strength of 4wt% mAlOOH/EP composites are increased by 259% and 44% than that of neat EP, respectively. Both dielectric constant and dielectric loss of mAlOOH/EP composites are slightly lower than those of the pure EP with mAlOOH no more than 5wt%. The mAlOOH/EP composites with 3wt% mAlOOH exhibit excellent global properties with the lowest dielectric constant and the lowest dielectric loss, as well as the highest glass transition temperature (123℃).
  • 图  1   拟薄水铝石(AlOOH)的TEM图像

    Figure  1.   TEM image of boehmite (AlOOH)

    图  2   AlOOH的XRD图谱

    Figure  2.   XRD pattern of AlOOH

    图  3   AlOOH和改性AlOOH(mAlOOH)的FTIR图谱

    Figure  3.   FTIR spectra of AlOOH and modified boehmite (mAlOOH)

    图  4   mAlOOH与AlOOH的分散性

    Figure  4.   Dispersibility of mAlOOH and AlOOH

    EP—Epoxy

    图  5   AlOOH/EP和mAlOOH/EP复合材料的SEM图像

    Figure  5.   SEM images of AlOOH/EP and mAlOOH/EP composites

    图  6   AlOOH/EP及mAlOOH/EP复合材料铝元素EDS图谱

    Figure  6.   EDS of Al distribution for AlOOH/EP and mAlOOH/EP composites

    图  7   AlOOH/EP和mAlOOH/EP复合材料的冲击强度

    Figure  7.   Impact strength of AlOOH/EP and mAlOOH/EP composites

    图  8   mAlOOH/EP 复合材料反应原理

    Figure  8.   Reaction mechanism of mAlOOH/EP composites

    图  9   AlOOH/EP和mAlOOH/EP复合材料弯曲强度

    Figure  9.   Bending strength of AlOOH/EP and mAlOOH/EP composites

    图  10   AlOOH/EP复合材料的介电常数

    Figure  10.   Dielectric constant of AlOOH/EP composites

    图  11   mAlOOH/EP复合材料的介电常数

    Figure  11.   Dielectric constant of mAlOOH/EP composites

    图  12   AlOOH/EP复合材料的介电损耗

    Figure  12.   Dielectric loss of AlOOH/EP composites

    图  13   mAlOOH/EP复合材料的介电损耗

    Figure  13.   Dielectric loss of mAlOOH/EP composites

    图  14   AlOOH/EP和mAlOOH/EP复合材料的玻璃化转变温度Tg

    Figure  14.   Glass transition temperature Tg of AlOOH/EP and mAlOOH/EP composites

  • [1]

    ZAHED A. Nanostructured epoxy adhesives: A review[J]. Progress in Organic Coatings,2019,135:449-453. DOI: 10.1016/j.porgcoat.2019.06.028

    [2]

    MARC S, FABIO D, DAVIDE F, et al. Epoxy-boehmite nanocomposites as new insulating materials[J]. Journal of Applied Polymer Science,2010,114(4):2541-2546.

    [3]

    DUAN Z W, HE H L, LIANG W Y, et al. Tensile, quasistatic and dynamic fracture properties of nano-Al2O3-modified epoxy resin[J]. Materials,2018,11(6):905. DOI: 10.3390/ma11060905

    [4] 刘新, 陈铎, 何辉永, 等. 热塑性颗粒-无机粒子协同增韧碳纤维增强环氧树脂复合材料[J]. 复合材料学报, 2020, 37(8):1904-1910.

    LIU X, CHEN D, HE H Y, et al. Synergistic toughening of thermoplastic particles-inorganic particles to carbon fiber reinforced epoxyresin composites[J]. Acta Materiae Compositae Sinica,2020,37(8):1904-1910(in Chinese).

    [5]

    CEREN Ö Z, KRZYSZTOF K, STEPHEN J P. Preparation and characterization of titanate-modified boehmite–polyamide-6 nanocomposites[J]. Polymer,2005,46(16):6025-6034. DOI: 10.1016/j.polymer.2005.05.065

    [6]

    SEONG J J, JAI J L, WOONG K, et al. Hard coating films based on organosilane-modified boehmite nanoparticles under UV/thermal dual curing[J]. Thin Solid Films,2008,516(12):3904-3909. DOI: 10.1016/j.tsf.2007.07.165

    [7]

    MOHANMMADNEZHAD G, MOHAMMAD D, AFSHIN N. High surface area nano-boehmite as effective nano-filler for preparation of boehmite-polyamide-6 nanocompo-sites[J]. Advances in Polymer Technology,2018,37(4):1221-1228. DOI: 10.1002/adv.21783

    [8]

    LIAO H D, ZHANG W P, SUN X M, et al. Study on the preparation and performance of epoxy resin/AlOOH nano-composite materials[J]. Advanced Materials Research,2012(399):579-601.

    [9]

    WU Z J, ZHUO Q, SUN T, et al. Mechanical properties of epoxy resins reinforced with synthetic boehmite (AlOOH) nanosheets[J]. Journal of Applied Polymer Science,2015,132(5):513-519.

    [10]

    ANIL R R, RAJ B L, ALI Z, et al. Liquid metal synthesis of two-dimensional aluminium oxide platelet store inforce epoxy composites[J]. Composites Science and Technology,2019(181):107708.

    [11]

    CORCIONE C E. Development and characterization of novel photopolymerizable formulations for stereolithography[J]. Journal of Polymer Engineering,2014,34(1):85-93. DOI: 10.1515/polyeng-2013-0224

    [12]

    SUN T, WU Z J, ZHUO Q, et al. Surface functionalized boehmite sheets filled epoxy composites with enhanced mechanical and thermal properties[J]. Polymers for Advanced Technologies,2014,25(12):1604-1609. DOI: 10.1002/pat.3410

    [13] 范晓龙, 张广成, 李建通, 等. 环氧树脂微孔材料的制备与性能[J]. 复合材料学报, 2016, 33(9):1915-1921.

    FAN X L, ZHANG G C, LI J T, et al. Preparation and properties of microcellular epoxy resin[J]. Acta Materiae Compositae Sinica,2016,33(9):1915-1921(in Chinese).

    [14]

    ZHOU Y C, LIU F, WANG H. Novel organic-inorganic composites with high thermal conductivity for electronic packaging applications: A key issue review[J]. Polymer Composites,2017,38(4):803-813. DOI: 10.1002/pc.23641

    [15] 国家质量监督检验检疫总局. 树脂浇铸体性能实验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine. Test methods for properties of resin casting body: GB/T 2567—2008[S]. Beijing: China Standard Press, 2008(in Chinese).

    [16] 国家质量技术监督局. 塑料简支梁冲击性能的测定: GB/T 1043—2008[S]. 北京: 中国标准出版社, 2008.

    China State Bureau of Quality and Technical Supervision. Determination of impact properties of plastic simply supported beams: GB/T 1043—2008[S]. Beijing: China Standard Press, 2008(in Chinese).

    [17]

    ALEMI A, HOSSEINPOUR Z, DOLATYARI M, et al. Boehmite (γ-AlOOH) nanoparticles: Hydrothermal synthesis, characterization, pH-controlled morphologies, optical properties, and DFT calculations[J]. Physica Status Solidi (b),2012,249(6):1-7.

    [18] 张明艳, 王登辉, 吴子剑, 等. 改性碳纳米管/环氧树脂复合材料的介电性能[J]. 复合材料学报, 2020, 37(6):1285-1294.

    ZHANG M Y, WANG D H, WU Z J, et al. Dielectric properties of modified carbon nanotube/epoxy composites[J]. Acta Materiae Compositae Sinica,2020,37(6):1285-1294(in Chinese).

    [19] 巩桂芬, 邢韵, 李泽, 等. 表面修饰纳米晶纤维素及其在双马来酰亚胺树脂中的应用[J]. 复合材料学报, 2020, 37(6):1334-1343.

    GONG G F, XING Y, LI Z, et al. Surface modification of nano crystalline cellulose and application in bismaleimide resin[J]. Acta Materiae Compositae Sinica,2020,37(6):1334-1343(in Chinese).

    [20]

    MEDIA G Z K, ANNA-MARIA E, VASILE-DAN H, et al. Short- and long-range mechanical and chemical interphases caused by interaction of boehmite (γ-AlOOH) with anhydride-cured epoxy resins[J]. Nanomaterials,2019,9(6):853. DOI: 10.3390/nano9060853

  • 期刊类型引用(7)

    1. 杭传伟,徐牛牛,彭飞,张淑斌. 上浆剂粒径对碳纤维性能的影响. 高科技纤维与应用. 2023(05): 20-26 . 百度学术
    2. 陈中武,刘丽,黄玉东. 环氧Pickering乳液的制备及在玄武岩纤维浸润剂中的应用. 化学与粘合. 2021(01): 5-11 . 百度学术
    3. 强勇勇,赵岩,王立珂. 聚乙二醇/氯化锌条件下回收CFRP方法研究. 工程塑料应用. 2020(01): 63-67+85 . 百度学术
    4. 张曼玉,刘腾飞,田小永,李涤尘. 面向3D打印的连续碳纤维上浆工艺及其对复合材料性能的影响. 中国材料进展. 2020(05): 349-355+363 . 百度学术
    5. 于广,魏化震,李大勇,高守臻,罗长宏,马开宝,王晓立. 碳纤维上浆剂及其对复合材料界面性能的影响研究进展. 工程塑料应用. 2019(02): 143-147 . 百度学术
    6. 温博. 不同碳纤维取向角对高尔夫球杆材料阻尼性能的研究. 合成材料老化与应用. 2019(06): 72-75 . 百度学术
    7. 郝瑞婷,张学军,田艳红. 耐热型热塑性上浆剂研究进展. 化工进展. 2018(S1): 117-124 . 百度学术

    其他类型引用(4)

图(14)
计量
  • 文章访问数:  985
  • HTML全文浏览量:  433
  • PDF下载量:  53
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-10-29
  • 录用日期:  2021-01-19
  • 网络出版日期:  2021-01-31
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回