Loading [MathJax]/jax/output/SVG/jax.js

FRP筋/珊瑚混凝土柱轴心受压承载力

陈爽, 梁淑嘉, 关纪文

陈爽, 梁淑嘉, 关纪文. FRP筋/珊瑚混凝土柱轴心受压承载力[J]. 复合材料学报, 2021, 38(10): 3530-3541. DOI: 10.13801/j.cnki.fhclxb.20201217.001
引用本文: 陈爽, 梁淑嘉, 关纪文. FRP筋/珊瑚混凝土柱轴心受压承载力[J]. 复合材料学报, 2021, 38(10): 3530-3541. DOI: 10.13801/j.cnki.fhclxb.20201217.001
CHEN Shuang, LIANG Shujia, GUAN Jiwen. Compression behavior of FRP bars/coral concrete columns under axial compression loading[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3530-3541. DOI: 10.13801/j.cnki.fhclxb.20201217.001
Citation: CHEN Shuang, LIANG Shujia, GUAN Jiwen. Compression behavior of FRP bars/coral concrete columns under axial compression loading[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3530-3541. DOI: 10.13801/j.cnki.fhclxb.20201217.001

FRP筋/珊瑚混凝土柱轴心受压承载力

基金项目: 国家自然科学基金(51568013);广西建筑新能源与节能重点实验室开放基金(桂科能19-J-21-3);广西科技大学博士基金
详细信息
    作者简介:

    陈爽博士,副教授。研究方向为新型建筑材料,混凝土结构耐久性 E-mail:shuangchen81@163.com

    通讯作者:

    陈爽,博士,副教授,研究方向为新型建筑材料、混凝土结构耐久性  E-mail:shuangchen81@163.com

  • 中图分类号: TU377.9

Compression behavior of FRP bars/coral concrete columns under axial compression loading

  • 摘要: 对8根塑料纤维增强树脂复合材料(FRP)筋/珊瑚混凝土轴心受压柱和1根钢筋/珊瑚混凝土轴心受压柱进行了承载能力试验,试验参数包括配筋率、箍筋间距、长细比和筋材种类。结果表明:相同配筋率下,FRP筋/珊瑚混凝土柱和钢筋/珊瑚混凝土柱的破坏机制不同,但受力性能良好;相同构件尺寸下,增大纵筋直径导致纵筋与混凝土保护层的黏结性能降低;减小箍筋间距有利于提高构件的延性;长细比越大的构件承载力越低。然后,基于筋材压缩性能试验的数据分析及参考文献的对比探讨,建议碳纤维增强树脂复合材料(CFRP)筋名义屈服强度取值为0.34fy(fy为筋材的极限抗压强度),对应的理论值与试验结果相近,从而提出适用于CFRP筋/珊瑚混凝土柱的理论计算,为工程实践提供参考依据。
    Abstract: The axially loaded bearing capacity tests on 8 fiber reinforced polymer (FRP) bar/coral concrete columns and 1 steel bar/coral concrete column were carried out. Parameters such as reinforcement ratio, stirrup spacing, slenderness ratio and reinforcement type were discussed. The results show that the failure mechanism of FRP reinforced coral concrete column and steel bar/coral concrete column is different, but the mechanical performance is still good. Increasing the diameter of longitudinal reinforcement leads to the decrease of bonding performance between longitudinal reinforcement and concrete protective layer. Reducing the spacing of stirrups is beneficial to improve the ductility of the members, and the higher the aspect ratio, the lower the bearing capacity of the members. Then, based on the data analysis of the compression performance experiment and the comparison of references, it is suggested that the nominal yield strength of carbon fiber reinforced polymer (CFRP) reinforcement should be 0.34fy (fy is the ultimate compressive strength of the reinforcement), and the corresponding theoretical value is similar to the experimental results. Finally, the theoretical calculation formula for bearing capacity of CFRP/coral concrete axial compression column is put forward, which provides a reference for engineering practice.
  • 图  1   纤维增强树脂复合材料(FRP)筋试件及加载装置

    Figure  1.   Fiber reinforced polymer (FRP) bars and loading device

    图  2   FRP筋应力-应变曲线

    Figure  2.   Stress-strain curve of FRP bars

    图  3   试件截面尺寸及FRP筋骨架

    Figure  3.   Section size of test piece and FRP bar skeleton

    图  4   主要测点布置及加载装置

    Figure  4.   Loading devices and test points arrangement

    图  5   珊瑚混凝土柱的破坏图

    Figure  5.   Damage pictures of coral concrete columns

    图  6   纵筋破坏图

    Figure  6.   Damage modes of longitudinal bars

    图  7   配筋种类对珊瑚混凝土柱承载力的影响

    Figure  7.   Effect of the type of reinforcement on the bearing capacity of coral concrete columns

    图  8   配筋率对CFRP筋/珊瑚混凝土柱承载力的影响

    Figure  8.   Effect of the reinforcement ratio on the bearing capacity of CFRP bars/coral concrete columns

    图  9   箍筋间距对CFRP筋/珊瑚混凝土柱承载力的影响

    Figure  9.   Effect of stirrup spacing on the bearing capacity of CFRP bars/coral concrete columns

    图  10   长细比对CFRP筋/珊瑚混凝土柱承载力的影响

    Figure  10.   Effect of slenderness ratio on the bearing capacity of CFRP bars/coral concrete columns

    图  11   CFRP筋本构模型

    Figure  11.   Constitutive model of CFRP bar

    图  12   CFRP筋/珊瑚混凝柱土应力云图

    Figure  12.   Mises stress moire figure of CFRP bars/coral concrete column

    图  13   CFRP筋/珊瑚混凝土柱荷载-位移曲线有限元与试验结果对比

    Figure  13.   Comparison of load-displacement curves between FEM and test results of CFRP bars/coral concrete columns

    图  14   不同因素对CFRP筋/珊瑚混凝土柱极限承载力的影响

    Figure  14.   Effect of different factors on ultimate bearing capacity of CFRP bars/coral concrete columns

    图  15   CFRP筋/珊瑚混凝土柱的承载力理论值与试验值对比结果

    Figure  15.   Comparison of theoretical and test values of bearing capacity of CFRP bars/coral concrete columns

    表  1   珊瑚骨料的物理性能

    Table  1   Physical properties of coral aggregate

    ProjectSaturated water
    absorption
    PorosityWater
    absorption
    Bulk density/
    (kg·m−3)
    Apparent density/
    (kg·m−3)
    Cylinder compression
    strength/MPa
    Result 18% 50% 17.9% 9.63 2400 2.02
    下载: 导出CSV

    表  2   珊瑚混凝土配合比

    Table  2   Mix proportion of coral concrete

    Concrete strengthP.Ⅱ42.5Cementitious material/(kg·m−3)
    SandCoralSeawaterPre-water absorptionWater reducing agent
    C30 500 729 705 142.5 71.7 5
    下载: 导出CSV

    表  3   珊瑚混凝土物理力学性能

    Table  3   Physical and mechanical properties of coral concrete

    Concrete strengthfcu/MPafc/MPafts/MPaElastic/GPaPoisson's ratio
    C30 36.02 34.2 3.92 30.6 0.25
    Notes: fcu—Cube compressive strength; fc—Axial compressive strength; fts—Splitting tensile strength.
    下载: 导出CSV

    表  4   筋材的力学性能参数

    Table  4   Mechanical performance parameters of rebar

    SpeciesDiameter/mmEf/GPaCompressive strength/MPaYield strength/MPaTensile strength/MPa
    HRB400 steel stirrup 6 210 -- 401.8 527
    HRB400 steel longitudinal bar 10 210 -- 420.2 548.3
    GFRP stirrup 6 38.7 -- -- 592
    CFRP stirrup 6 121.1 -- -- 2040
    GFRP longitudinal bar 10 48.04 676.2 -- 793
    CFRP longitudinal bar 8 126.2 461.2 -- 2106
    CFRP longitudinal bar 10 118.2 458.6 -- 2003
    CFRP longitudinal bar 12 108.2 456.4 -- 1983
    Notes: Ef—Material elastic modulus; GFRP—Glass fiber reinforced polymer; CFRP—Carbon fiber reinforced polymer.
    下载: 导出CSV

    表  5   FRP筋/珊瑚混凝土柱试件参数

    Table  5   Specimen parameters of FRP bars/coral concrete columns

    Specimen
    number
    Stirrup
    spacing/mm
    L/bLongitudinal
    reinforcement ratio/%
    Reinforcement
    pattern
    Ultimate
    load/kN
    μ
    CFRP/CC-1 φ6@50 3.3 2.09 φ10×6 731.1 1.65
    CFRP/CC-2 φ6@75 3.3 2.09 φ10×6 745.1 1.63
    CFRP/CC-3 φ6@100 3.3 2.09 φ10×6 741.1 1.62
    CFRP/CC-4 φ6@100 3.3 1.33 φ8×6 757.9 1.32
    CFRP/CC-5 φ6@100 3.3 3.01 φ12×6 730.3 1.83
    CFRP/CC-6 φ6@100 4.3 2.09 φ10×6 785.1 1.39
    CFRP/CC-7 φ6@100 5.3 2.09 φ10×6 729.2 1.16
    Steel/CC-1 φ6@100 3.3 2.09 φ10×6 957.9 1.37
    GFRP/CC-1 φ6@100 3.3 2.09 φ10×6 797.3 1.31
    Notes:CC—Coral concrete;L/b—Slenderness ratio of column;μ—Ductility coefficient[18].
    下载: 导出CSV

    表  6   CFRP筋/珊瑚混凝土柱的承载力试验值与理论值对比

    Table  6   Comparison of test and theoretical values of CFRP bars/coral concrete columns

    Specimen numberfc/MPaEf/GPafy/MPaNp1/kNNp2/kNN/kNNp1/NNp2/N
    CFRP/CC-1 34.2 118.2 155.9 788.06 759.53 731.1 1.078 1.042
    CFRP/CC-2 34.2 118.2 155.9 788.06 759.53 745.1 1.058 1.027
    CFRP/CC-3 34.2 118.2 155.9 788.06 759.53 741.1 1.063 1.005
    CFRP/CC-4 34.2 126.2 156.8 781.38 735.42 757.9 1.031 0.966
    CFRP/CC-5 34.2 108.2 155.2 796.22 788.99 730.3 1.090 1.080
    CFRP/CC-6 34.2 118.2 155.9 780.18 751.93 785.1 1.070 1.004
    CFRP/CC-7 34.2 118.2 155.9 788.06 759.53 729.2 1.004 0.974
    Notes: fy—Nominal yield strength of CFRP bars;Np1—Theoretical value (Eq. 2) of bearing capacity; Np2—Theoretical value (Eq. 3) of bearing capacity; N—Test value.
    下载: 导出CSV
  • [1]

    MATTA F, EI-SAYED A K, NANNI A, et al. Size effect on concrete shear strength in beams reinforced with fiber-reinforced polymer bars[J]. Aci Structural Journal,2013,110(4):617-628.

    [2] 龚永智. FRP筋混凝土柱的研究进展[J]. 建筑技术, 2006, 37(11):836-838. DOI: 10.3969/j.issn.1000-4726.2006.11.011

    GONG Y Z. Research progress of FRP reinforced concrete columns[J]. Architecture Technology,2006,37(11):836-838(in Chinese). DOI: 10.3969/j.issn.1000-4726.2006.11.011

    [3] 张新越, 欧进萍. FRP加筋混凝土短柱受压性能试验研究[J]. 西安建筑科技大学学报: 自然科学版, 2006, 38(4):467-472.

    ZHANG X Y, OU J P. Experimental research on compressive properties of concrete stub square column reinforced with FRP bars[J]. Journal of Xi'an University of Architecture & Technology (Natural Science) Edition,2006,38(4):467-472(in Chinese).

    [4] 汤杰. BFRP增强珊瑚礁砂混凝土基本构件力学性能研究[D]. 南京: 东南大学, 2018.

    TANG J. Study on the mechanical properties of BFRP reinforced coral reef and sand cconcrete structural members[D]. Nanjing: Southeast University, 2018(in Chinese).

    [5] 胡乔, 陈小兵, 阳涛, 等. 珊瑚混凝土梁抗弯性能试验研究[J]. 混凝土, 2017(4):21-24, 28. DOI: 10.3969/j.issn.1002-3550.2017.04.006

    HU J, CHEN X B, YANG T, et al. Flexural properties of coral concrete beam[J]. Concrete,2017(4):21-24, 28(in Chinese). DOI: 10.3969/j.issn.1002-3550.2017.04.006

    [6] 王磊, 李威, 陈爽. 海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响[J]. 复合材料学报, 2018, 35(12):3458-3465.

    WANG L, LI W, CHEN S. Effects of seawater soaking on the bonding properties of FRP bars-coral concrete[J]. Acta Materiae Compositae Sinica,2018,35(12):3458-3465(in Chinese).

    [7] 李彪, 侯慕轶, 杨勇新, 等. 复材筋珊瑚骨料混凝土梁抗弯性能试验研究[J]. 工业建筑, 2016, 46(11):181-184.

    LI B, HOU M Y, YANG Y X, et al. Experiment study on the flexural behavior of coral aggregate concrete beam with FRP[J]. Industrial Construction,2016,46(11):181-184(in Chinese).

    [8] 周继凯, 杜钦庆, 袁明亮, 等. GFRP筋抗压力学性能试验研究[J]. 河海大学学报: 自然科学版, 2008, 36(4):542-545.

    ZHOU J K, DU Q Q, YUAN M L, et al. Experimental study on compressive mechanical properties of GFRP rebars[J]. Journal of Hohai University(Natural Sciences),2008,36(4):542-545(in Chinese).

    [9] 孙丽, 王汉珽. GFRP筋受压力学性能试验[J]. 沈阳建筑大学学报(自然科学版), 2011, 27(6): 1037-1042.

    SUN L, WANG H T. Study of GFRP bar's mechanical properties in compression[J]. Journal of Shenyang Jianzhu University (Natural Science), 2011, 27(6): 1037-1042(in Chinese).

    [10]

    MOHAMED H M, AFIFI M Z, BENMOKRANE B. Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load[J]. Journal of Bridge Engineering,2014,19(7):04014020.

    [11] 邓宗才, 张秀丽. GFRP筋纤维混凝土圆柱轴压性能研究[J]. 哈尔滨工程大报, 2018, 39(10):1617-1624.

    DENG Z C, ZHANG X L. Axial compressive behavior of circular concrete columns reinforced with GFRP bars and spirals[J]. Journal of Harbin Engineering University,2018,39(10):1617-1624(in Chinese).

    [12] 刘霞, 李峰, 佘殷鹏. 玄武岩纤维筋增强聚合物筋增强珊瑚礁砂混凝土柱轴压试验[J]. 复合材料学报, 2020, 37(10): 2428-2438.

    LIU X, LI F, SHE D P. Axial compression test of basalt fiber reinforced polymer reinforced coral reef and sand aggregate concrete column[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2428-2438(in Chinese).

    [13] 中华人民共和国建设部. 轻骨料混凝土技术规程: JGJ51—2002[S]. 北京: 中国建筑工业出版社, 2002.

    Ministry of Construction of the People’s Republic of China. Technical specification for lightweight aggregate concrete: JGJ51—2002[S]. Beijing: China Architecture & Building Press, 2002(in China).

    [14] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[J]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban Rural Construction of the People's Republic of China. Standard for test methods of concrete structures: GB/T 50152—2012[J]. Beijing: China Architecture & Building Press, 2012(in Chinese).

    [15] 国家标准局. 纤维增强塑料性能试验方法总则: GB/T1446—2005[S]. 北京: 中国标准出版社, 2005.

    National Bureau of Standards. Fiber-reinforced plastics composites-The generals for determination of properties: GB1446—2005[S]. Beijing: China Standard Press, 2005(in Chinese).

    [16] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban Rural Construction of the People's Republic of China. Code for design of concrete structures: GB50010—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).

    [17] 于明伟. 单一纤维FRP筋基本力学性能与混杂FRP筋的研制[D]. 哈尔滨: 哈尔滨工业大学, 2005: 16-35.

    YU M W. The basic mechanical properties of single fiber FRP reinforcement and development of mixed FRP reinforcement[D]. Harbin: Harbin Institute of Technology, 2005: 16-35(in Chinese).

    [18]

    PESSIKI S, PIERONI A. Axial load behavior of large scale spirally reinforced highstrength concrete columns[J]. ACI Structural Journal,1997,94(3):304-314.

    [19] 米向乾. GFRP筋及GFRP筋混凝土柱受压性能研究[D]. 沈阳: 沈阳建筑大学, 2012.

    MI X Q. Study on the compressive behavior of GFRP Bars and GFRP reinforced concrete columns[D]. Shenyang: Shenyang Jianzhu University, 2012(in Chinese).

    [20] 李林. 珊瑚混凝土的基本特性研究[D]. 南宁: 广西大学, 2012.

    LI L. Research on basic characteristics of coral concrete[D]. Nanning: Guangxi University, 2012(in Chinese).

    [21] 陈爽. 湿热海洋环境下FRP筋-珊瑚混凝土粘结滑移性能研究[D]. 南宁: 广西大学, 2019.

    CHEN S. Study on bond property beteewn FRP bars and coral concrete under marine environment[D]. Nanning: Guangxi University, 2019(in Chinese).

    [22] 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报, 1982(1):1-12.

    GUO Z H, ZHANG X Q, ZHANG D C, et al. Experimenral investigation of the complete stress-strain curve of concrete[J]. Journal of Building Structures,1982(1):1-12(in Chinese).

    [23] 达波, 余红发, 麻海燕, 等. 全珊瑚海水混凝土单轴受压应力-应变全曲线试验研究[J]. 建筑结构学报, 2017, 38(1):144-151.

    DA B, YU H F, MA H Y et al. Experimental research on whole stress-strain curves of coral aggregate seawater concrete under uniaxial compression[J]. Journal of Building Structures,2017,38(1):144-151(in Chinese).

    [24] 中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应技术标准: GB 50608—2011[S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of Housing and Urban Rural Construction of the People's Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB 50608—2011[S]. Beijing: China Architecture & Building Press, 2011(in Chinese).

    [25]

    TOBBI H, FARGHALY A S, BENMOKRANE B. Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars[J]. ACI Structural Journal,2012,109(4):551-558.

    [26]

    TOBBI H, FARGHALY A S, BENMOKRANE B. Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios[J]. ACI Structural Journal,2014,111(2):375-385.

  • 期刊类型引用(1)

    1. 高沐,夏志东,陈婧晗,高园,王金淑. 拉伸应变下镍包碳纤维填充导电橡胶取向及电阻响应. 复合材料学报. 2019(12): 2756-2763 . 本站查看

    其他类型引用(5)

图(15)  /  表(6)
计量
  • 文章访问数:  1119
  • HTML全文浏览量:  610
  • PDF下载量:  83
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-10-14
  • 录用日期:  2020-12-03
  • 网络出版日期:  2020-12-16
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回