TiO2-g-C3N4-Bi2O3复合异质结构催化材料在水处理中的应用

Application of TiO2-g-C3N4-Bi2O3 composite heterogeneous catalytic materials in water treatment

  • 摘要: 异质结光催化材料在降解有毒有害污染物方面体现出优良的效果。以苯酚有机废水作为研究对象,球磨法所制备的TiO2-g-C3N4和TiO2-g-C3N4-Bi2O3两种光催化材料作为实验材料,探究不同光源条件下TiO2-g-C3N4、TiO2-g-C3N4-Bi2O3的光催化特性及其对苯酚废水处理效果。结果表明,在可见光和紫外光单独照射条件下,三元体系的TiO2-g-C3N4-Bi2O3均比TiO2-g-C3N4具有更高的光催化活性,并且可见光条件下,TiO2-g-C3N4-Bi2O3比TiO2-g-C3N4的优势更明显;在可见光和紫外光同时照射时,TiO2-g-C3N4-Bi2O3、TiO2-g-C3N4对苯酚废水的降解效率分别达到99.44%、96.67%。表征结果表明,Bi2O3的掺杂有效地增强了催化剂在全光谱范围内对光的吸收,并且三元体系的构建有效地促进了光生电子与空穴的分离。研究结果表明,通过简单可控的球磨-微波加热-煅烧工艺,可以实现TiO2-g-C3N4-Bi2O3的制备,并且证实了TiO2-g-C3N4-Bi2O3材料在有机废水处理方面的良好前景。

     

    Abstract: Heterojunction photocatalytic materials show excellent ability in degrading toxic and harmful pollutants. In this study, we prepared TiO2-g-C3N4 and TiO2-g-C3N4-Bi2O3 heterostructure photocatalytic materials by ball milling. The photocatalytic performance of TiO2-g-C3N4 and TiO2-g-C3N4-Bi2O3 towards phenol organic wastewater were investigated under different light source, as well as the effects of light source on the degradation performance. Under the single visible light or ultraviolet light, the ternary TiO2-g-C3N4-Bi2O3 shows higher photocatalytic activity than TiO2-g-C3N4. And under visible light conditions, the degradation performance of TiO2-g-C3N4-Bi2O3 is much better than TiO2-g-C3N4. Under the simultaneous irradiation of visible light and ultraviolet light, the degradation efficiency of TiO2-g-C3N4-Bi2O3 and TiO2-g-C3N4 on phenol wastewater reached 99.44% and 96.67%, respectively. The characterization results show that the doping of Bi2O3 remarkably enhances the absorption of light by the catalyst in the full spectrum, and the construction of the ternary system promotes the separation of photogenerated electrons and holes. The research results show that the ternary TiO2-g-C3N4-Bi2O3 can be achieved through a feasible ball method of milling-microwave heating-calcination process, and confirms the promising prospects of TiO2-g-C3N4-Bi2O3 in organic wastewater treatment.

     

/

返回文章
返回