Abstract:
The graphene and metal nano-materials are excellent conductive nanomaterials. In order to construct an electrochemical sensing interface with high-efficiency active surface area, glassy carbon electrode was used as a conductive substrate, and Au-Pt nano particles/reduced graphene oxide-cellulose microfiber (Au-Pt NPs/RGO-CMF) composites were successfully prepared by drip coating combined with one-step electrodeposition. The SEM, atomic force microscopy (AFM), EDS and Raman spectroscopy analysis show that Au-Pt nanoparticles are uniformly distributed on the thin layer of RGO-CMF, and at the same time, graphene oxide (GO) reduce to RGO. Using potassium ferricyanide as a redox probe to study the electrochemical properties of the interface, under optimized experimental conditions (cyclic voltammetry electrodeposition: Potential is −1.2-0 V, period is 20, electrolyte pH value is 6, drops coated GO-CMF volume is 8 μL), the high-efficiency active surface area of Au-Pt NPs/RGO-CMF composites (3.54 cm
2) is much better than that of bare glassy carbon electrode (1.52 cm
2). It shows that the constructed interface has high electrocatalytic activity, which provides theoretical support for the further application of the sensor.