有机支架结构对丁苯橡胶/乙烯-醋酸乙烯共聚物复合发泡材料性能的影响

姬占有, 马建中, 王慧迪, 马忠雷, 邵亮

姬占有, 马建中, 王慧迪, 等. 有机支架结构对丁苯橡胶/乙烯-醋酸乙烯共聚物复合发泡材料性能的影响[J]. 复合材料学报, 2021, 38(7): 2123-2131. DOI: 10.13801/j.cnki.fhclxb.20200928.001
引用本文: 姬占有, 马建中, 王慧迪, 等. 有机支架结构对丁苯橡胶/乙烯-醋酸乙烯共聚物复合发泡材料性能的影响[J]. 复合材料学报, 2021, 38(7): 2123-2131. DOI: 10.13801/j.cnki.fhclxb.20200928.001
JI Zhanyou, MA Jianzhong, WANG Huidi, et al. Effect of organic scaffold structure on properties of styrene butadiene rubber/ ethylene vinyl acetate composite foams[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2123-2131. DOI: 10.13801/j.cnki.fhclxb.20200928.001
Citation: JI Zhanyou, MA Jianzhong, WANG Huidi, et al. Effect of organic scaffold structure on properties of styrene butadiene rubber/ ethylene vinyl acetate composite foams[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2123-2131. DOI: 10.13801/j.cnki.fhclxb.20200928.001

有机支架结构对丁苯橡胶/乙烯-醋酸乙烯共聚物复合发泡材料性能的影响

基金项目: 咸阳市重大科技专项计划(2018k01-46);西安市科技计划项目(2019216514GXRC001CG002-GXYD1.2);陕西省教育厅服务地方专项计划项目(19JC003)
详细信息
    通讯作者:

    马建中,教授,博士生导师,研究方向为有机/无机纳米复合材料的关键技术 E-mail:majz@sust.edu.cn

    邵亮,副教授,硕士生导师,研究方向为聚合物纳米复合发泡材料的设计与应用 E-mail:shaoliang@sust.edu.cn

  • 中图分类号: TB324

Effect of organic scaffold structure on properties of styrene butadiene rubber/ ethylene vinyl acetate composite foams

  • 摘要: 为提高橡胶发泡材料尺寸稳定性及实现其广泛的工业化应用,基于硫磺和过氧化二异丙苯的交联体系,通过机械共混的方式,以具有结晶性的乙烯-醋酸乙烯共聚物(EVA)构筑有机支架结构,制备了高尺寸稳定性的丁苯橡胶(SBR)/EVA复合发泡材料。研究了不同醋酸乙烯(VA)含量的EVA对SBR/EVA复合材料结晶性、相容性、泡孔形貌、尺寸稳定性和力学性能的影响规律,并探明了EVA结晶区作为有机支架结构的抗收缩机制。结果表明:不同VA含量EVA的SBR/EVA复合材料都具有良好的发泡行为。高结晶度的EVA (VA含量为18%)使SBR/EVA复合发泡材料的收缩率减小至4.7%,硬度和压缩强度(60%)分别增加到70 Shore C和22 MPa。
    Abstract: In order to improve the dimensional stability of the rubber-based foam material and realize its wide industrialization, an organic scaffold structure was constructed with crystalline ethylene vinyl acetate copolymer (EVA) to enhance the dimensional stability of styrene butadiene rubber (SBR)/EVA composite foam based on the cross-linked structure of sulfur and dicumyl peroxide through mechanical blending. The effects of different content of vinyl ester (VA) content on the crystallinity, compatibility, cell morphology, dimensional stability and mechanical properties of SBR/EVA composites were studied, and the anti-shrinkage mechanism of the EVA crystal area as an organic scaffold structure was explored. The results show that SBR/EVA composites with different VA content of EVA have good foaming behavior. The shrinkage of SBR/EVA composite foam with high crystallinity EVA (18% VA content) is reduced to 4.7% and its hardness and compression stress (60%) are increased to 70 Shore C and 22 MPa, respectively.
  • 图  1   不同醋酸乙烯(VA)含量的乙烯-醋酸乙烯共聚物(EVA)对丁苯橡胶(SBR)/EVA复合材料结晶行为的影响: (a) DSC曲线; (b) XRD图谱

    Figure  1.   Effect of ethylene vinyl acetate (EVA) with different vinyl ester (VA) content on crystallization behavior of styrene butadiene rubber (SBR)/EVA composite foams: (a) DSC curves; (b) XRD patterns

    图  2   不同VA含量EVA的SBR/EVA复合材料截面的SEM和超景深3D显微镜图像

    Figure  2.   SEM and ultra-depth 3D images of cross-sectioned SBR/EVA composites with different VA content EVA

    图  3   不同VA含量EVA的SBR/EVA复合发泡材料的截面泡孔结构的SEM图像

    Figure  3.   SEM images of cross-sectioned cell structure of SBR/EVA composite foams with different VA content EVA

    图  4   不同VA含量EVA的SBR/EVA复合发泡材料的平均泡孔尺寸和泡孔密度

    Figure  4.   Mean cell size and cell density of SBR/EVA composite foams with different VA content EVA

    图  5   不同VA含量的EVA对SBR/EVA复合发泡材料尺寸稳定性的影响: (a)收缩率; (b)后收缩率

    Figure  5.   Effect of EVA with different VA content on dimensional stability of SBR/EVA composite foams: (a) Shrinkage; (b) Post shrinkage

    图  6   EVA结晶区作为有机支架结构的抗收缩机制

    Figure  6.   Anti-shrinkage mechanism of organic scaffold structure for EVA crystalline region

    图  7   SBR/EVA复合发泡材料的物理和力学性能: (a)密度; (b)硬度; (c)应力-应变曲线; (d)压缩应力-应变(60%)曲线

    Figure  7.   Physical and mechanical properties of SBR/EVA composite foams: (a) Density; (b) Hardness; (c) Stress-strain curves; (d) Compressive stress-strain (60%) curves

    表  1   不同VA含量EVA的SBR/EVA复合材料的结晶行为

    Table  1   Crystallization behavior of SBR/EVA composites with different VA content EVA

    VA content/%ΔHf/(J·g−1)Tm1/℃Tm2/℃χc/%
    18 524.8 50.1 89.4 8.15
    26 128.4 52.4 73.9 1.99
    28 107.3 50.3 75.3 1.67
    33 79.7 48.5 66.0 1.24
    40 72.3 48.3 1.12
    Notes: ΔHf —Enthalpy of melting; Tm1, Tm2—Melting temperature; χc—Crystallinity.
    下载: 导出CSV

    表  2   VA含量为18%的SBR/EVA复合发泡材料与其他发泡材料的物理和力学性能对比[34-41]

    Table  2   Comparison of physical and mechanical properties between SBR/EVA composite foam with VA content of 18% and other foam materials[34-41]

    MaterialDensity/(g·cm−3)Shrinkage/%Tensile/MPaElongation/%Reference
    EVA/MWCNT 0.15 3.83 251 [34]
    EVA/POE 0.18 2.66 268 [35]
    EVA/CPE 0.12 7.2 1.05 200 [36]
    EVA/TPU 0.15 2.50 244 [37]
    BR/SBR/NR 0.89±0.006 11.10±0.3 538±18 [38]
    EPDM 0.29 2.44 626 [39]
    CPE 1.93 269 [40]
    SBS/SBR/PS 0.20 5.0 0.92 270 [41]
    SBR/EVA 0.47±0.03 4.7±0.35 3.15±0.17 642±5.52 This work
    Notes: MWCNT—Multiwalled carbon nanotube; POE—Polyolefin thermoplastic elastomer; CPE—Chlorinated polyethylene rubber; TPU—Thermoplastic polyurethane; BR—Butadiene rubber; NR—Nature rubber; EPDM—Ethylene-propylene-diene monomer; SBS—Styrene-butadiene-styrene block copolymer; PS—Polystyrene.
    下载: 导出CSV
  • [1]

    SAI H, TAN K W, HUR K, et al. Hierarchical porous polymer scaffolds from block copolymers[J]. Science,2013,341(6145):530-534. DOI: 10.1126/science.1238159

    [2]

    XIANG B, DENG Z, ZANG F, et al. Microcellular silicone rubber foams: The influence of reinforcing agent on cellular morphology and nucleation[J]. Polymer Engineering and Science,2019,59(1):5-14. DOI: 10.1002/pen.24857

    [3]

    XU Y, ZHANG S, PENG X, et al. Fabrication and mechanism of poly(butylene succinate) urethane ionomer microcellular foams with high thermal insulation and compressive feature[J]. European Polymer Journal,2018,99:250-258. DOI: 10.1016/j.eurpolymj.2017.12.032

    [4]

    VAHIDIFAR A, ESMIZASEH E, ROSTAMI E, et al. Morphological, rheological, and mechanical properties of hybrid elastomeric foams based on natural rubber, nanoclay and nanocarbon black[J]. Polymer Composites,2019,40(11):4289-4299. DOI: 10.1002/pc.25290

    [5]

    CHEN L, SCHADLER L S, OZISIK R. An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite foams[J]. Polymer,2011,52(13):2899-2909. DOI: 10.1016/j.polymer.2011.04.050

    [6]

    NOFAR M, AMELI A, PARK C B. Development of polylactide bead foams with double crystal melting peaks[J]. Polymer,2015,69:83-94. DOI: 10.1016/j.polymer.2015.05.048

    [7]

    SHRUDIN R W B, OHSHIMA M. Preparation of microcellular thermoplastic elastomer foams from polystyrene-b-ethylene-butylene-b-polystyrene (SEBS) and their blends with polystyrene[J]. Journal of Applied Polymer Science,2013,128(4):1-10.

    [8]

    SHAO L, JI Z Y, MA Z, et al. The synergy of double cross-linking agents on the properties of styrene butadiene rubber foams[J]. Scientific Reports,2016,6:36931. DOI: 10.1038/srep36931

    [9]

    JI Z, MA J, QIN X, et al. Improved dimensional stability of styrene butadiene rubber/ethylene vinyl acetate composite foams with skeleton support structure based on alternately cross-linking process[J]. Polymer,2018,157:103-110. DOI: 10.1016/j.polymer.2018.10.028

    [10]

    PHIRI M, SIBEKO M A, PHIRI M J, et al. Effect of free foaming and pre-curing on the thermal, morphological and physical properties of reclaimed tyre rubber foam composites[J]. Journal of Cleaner Production,2019,218(1):65-672.

    [11]

    GARANCHER J P, FERNYHOUGH A. Expansion and dimensional stability of semi-crystalline polylactic acid foams[J]. Polymer Degradation and Stability,2014,100:21-28. DOI: 10.1016/j.polymdegradstab.2013.12.037

    [12]

    KAIRYT A, JELIS S. Evaluation of forming mixture composition impact on properties of water blown rigid polyurethane (PUR) foam from rapeseed oil polyol[J]. Industrial Crops and Products,2015,66:210-215. DOI: 10.1016/j.indcrop.2014.12.032

    [13]

    HOSSIENY N J, BSRZEGARI M R, NOFARM, et al. Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams[J]. Polymer,2014,55(2):651-662. DOI: 10.1016/j.polymer.2013.12.028

    [14]

    ZHANG R, HUANG K, HU S, et al. Improved cell morphology and reduced shrinkage ratio of ETPU beads by reactive blending[J]. Polymer Testing,2017,63:38-46. DOI: 10.1016/j.polymertesting.2017.08.007

    [15]

    JAMEL M M, KHOSHNOUD P, GUNASHEKARS, et al. Effect of E-glass fibers and phlogopite mica on the mechanical properties and dimensional stability of rigid PVC foams[J]. Polymer-Plastics Technology and Engineering,2015,54(15):1560-1570. DOI: 10.1080/03602559.2015.1010222

    [16]

    JAMEL M M, KHOSHNOUD P, GUNASHEKAR S, et al. Mechanical properties and dimensional stability of rigid PVC foam composites filled with high aspect ratio phlogopite mica[J]. Journal of Minerals and Materials Characterization and Engineering,2015,3(4):237-247. DOI: 10.4236/jmmce.2015.34026

    [17]

    KWON M J, LIM D H, CHOI I C, et al. Preparation and properties of ethylene-vinyl acetate copolymer-based blend foams[J]. Journal of Elastomers and Plastics,2021,53(1):68-82. DOI: 10.1177/0095244319900375

    [18]

    ZHANG B S, ZHANG Z X, LV X F, et al. Properties of chlorinated polyethylene rubber/ethylene vinyl acetate copolymer blend-based foam[J]. Polymer Engineering and Science,2011,52(1):218-224.

    [19]

    WANG L, LANG F, DU F, et al. Zinc dimethacrylate-reinforced thermoplastic vulcanizates based on chlorinated polyethylene rubber/ethylene-vinyl acetate copolymer[J]. Journal of Macromolecular Science Part B: Physics,2013,52(1):178-189. DOI: 10.1080/00222348.2012.695655

    [20]

    HE Y X, MA J Z, LI Z, et al. Preparation and characterization of graft copolymer EVA-g-PU[J]. Polymer Plastics Technology and Engineering,2008,47(12):1214-1219. DOI: 10.1080/03602550802497123

    [21]

    MA J Z, DUAN Z, XUE C, et al. Morphology and mechanical properties of EVA/OMMT nanocomposite foams[J]. Journal of Thermoplastic Composite Materials,2013,26(4):555-569. DOI: 10.1177/0892705712458943

    [22]

    DUAN Z. Foamed materials from POE/EVA blends[J]. Journal of Functional Biomaterials,2012,43(4):508-511.

    [23]

    ZHAO Y F, XIAO M, WANG S J, et al. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites[J]. Composites Science and Technology,2007,67(11):2528-34.

    [24]

    SHIEH Y T, LIN Y G. Equilibrium solubility of CO2 in rubbery EVA over a wide pressure range: Effects of carbonyl group content and crystallinity[J]. Polymer,2002,43(6):1849-56. DOI: 10.1016/S0032-3861(01)00776-5

    [25]

    LIU S, EIJKELENKAMP R, DUVIGNEAU J, et al. Silica-assisted nucleation of polymer foam cells with nanoscopic dimensions: Impact of particle size, line tension, and surface functionality[J]. ACS Applied Materials and Interfaces,2017,9(43):37929-37940. DOI: 10.1021/acsami.7b11248

    [26]

    LIU S, YIN S, DUVIGNEAU J, et al. Bubble seeding nanocavities: Multiple polymer foam cell nucleation by polydimethylsiloxane-grafted designer silica nanoparticles[J]. ACS Nano,2020,14(2):1623-1634. DOI: 10.1021/acsnano.9b06837

    [27]

    LIU S, PANDEY A, DUVIGNEAU J, et al. Size-dependent submerging of nanoparticles in polymer melts: Effect of line tension[J]. Macromolecules,2018,51:2411−2417.

    [28] 王旭, 常素芹, 冯钠, 等. 不同发泡剂及工艺条件对BR/SBR/NR发泡材料相结构及尺寸稳定性的影响[J]. 弹性体, 2013, 23(1):58-64. DOI: 10.3969/j.issn.1005-3174.2013.01.015

    WANG Xu, CHANG Suqin, FENG Na, et al. Effect of blowing agents and process technology on morphology and dimensional stability of BR/SBR/NR foams[J]. China Elastomeric,2013,23(1):58-64(in Chinese). DOI: 10.3969/j.issn.1005-3174.2013.01.015

    [29] 金雪华, 司朗诵, 朱旭, 等. 发泡剂对聚氨酯硬泡保温塑料低温尺寸稳定性的研究[J]. 化工技术与开发, 2010, 39(5):13-15, 20. DOI: 10.3969/j.issn.1671-9905.2010.05.005

    JIN Xuehua, SI Langsong, ZHU Xu, et al. Effect of blowing agent on dimensional stability of polyurethane foam insulation plastic[J]. Technology and Development of Chemical Industry,2010,39(5):13-15, 20(in Chinese). DOI: 10.3969/j.issn.1671-9905.2010.05.005

    [30] 董懿嘉, 孙才英. 玉米秸秆粉对硬质聚氨酯泡沫尺寸稳定性的影响研究[J]. 化工新型材料, 2017, 45(1):194-196.

    DONG Yijia, SUN Caiying. Influence of corn straw powders on the dimentional stability of RPUF[J]. New Chemical Materials,2017,45(1):194-196(in Chinese).

    [31] 中国国家标准化管理委员会. 软质泡沫聚合材料拉伸强度和断裂伸长率的测定: GB/T 6344—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Flexible cellular polymeric materials: Determination of tensile strength and elongation at break: GB/T 6344—2008[S]. Beijing: China Standards Press, 2008(in Chinese).

    [32] 中国国家标准化管理委员会. 软质泡沫聚合材料模压和挤出海绵胶制品/成品的压缩性能试验: GB/T 20467—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Flexible cellular polymeric materials moulded and extruded sponge or expanded cellular rubber prodcuts Compressibility test on finished parts: GB/T 20467—2006[S]. Beijing: China Standards Press, 2006(in Chinese).

    [33]

    MA Z L, ZHANG G C, YANG Q, et al. Tailored morphologies and properties of high-performance microcellular poly(phenylene sulfide)/poly(ether sulfones) (PPS/PEEK) blends[J]. Journal of Supercritical Fluids,2018,132(40):116-128.

    [34]

    PARK K W, KIM G H. Ethylene vinyl acetate copolymer (EVA)/multiwalled carbon nanotube (MWCNT) nanocomposite foams[J]. Journal of Applied Polymer Science,2009,112(3):1845-1849. DOI: 10.1002/app.29736

    [35]

    DENG F Q, MA J Z, XUE C H, et al. Foamed materials from POE/EVA blends[J]. Journal of Functional Materials,2012,43(4):508-511.

    [36]

    ZHANG B S, ZHANG Z X, LV X F, et al. Properties of chlorinated polyethylene rubber/ethylene vinyl acetate copolymer blend-based foam[J]. Polymer Engineering and Science,2012,52(1):218-224. DOI: 10.1002/pen.22071

    [37]

    MA J Z, SHAO L, XUE C H, et al. Compatibilization and properties of ethylene vinyl acetate copolymer (EVA) and thermoplastic polyurethane (TPU) blend-based foam[J]. Polymer Bulletin,2014,71(9):2219-2234. DOI: 10.1007/s00289-014-1183-5

    [38]

    WANG X, FENG N, CHANG S. Effect of precured degrees on morphology, thermal, and mechanical properties of BR/SBR/NR foams[J]. Polymer Composites,2013,34(6):849-859. DOI: 10.1002/pc.22489

    [39]

    LEE K, CHANG Y W, KIM S W. Ethylene-propylene-diene terpolymer/halloysite nanocomposites: Thermal, mechanical properties, and foam processing[J]. Journal of Applied Polymer Science,2014,131(11):2928-2935.

    [40]

    ZHANG B S, LV X F, ZHANG Z X, et al. Effect of carbon black content on microcellular structure and physical properties of chlorinated polyethylene rubber foams[J]. Materials and Design,2010,31(6):3106-3110. DOI: 10.1016/j.matdes.2009.12.041

    [41]

    SHIH R S, KUO S W, CHANG F C. Thermal and mechanical properties of microcellular thermoplastic SBS/PS/SBR blend: Effect of crosslinking[J]. Polymer,2011,52(3):752-759. DOI: 10.1016/j.polymer.2010.12.026

  • 期刊类型引用(1)

    1. 徐文媛,黄鸿坤,沈蒙莎,程永兵,陈曦,杨绍明. NaAlCl_4/ZSM-5@γ-Al_2O_3核壳复盐催化剂的制备及其歧化性能. 复合材料学报. 2022(10): 4602-4609 . 本站查看

    其他类型引用(0)

图(7)  /  表(2)
计量
  • 文章访问数:  1052
  • HTML全文浏览量:  521
  • PDF下载量:  66
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-07-05
  • 录用日期:  2020-09-23
  • 网络出版日期:  2020-09-27
  • 刊出日期:  2021-07-14

目录

    /

    返回文章
    返回