湿热环境对CFRP复合材料-铝合金螺栓连接结构静力失效的影响

Effects of hygrothermal environment on quasi-static failure of CFRP composite-aluminum alloy bolted joints

  • 摘要: 湿热环境对碳纤维增强树脂(CFRP)复合材料-铝合金螺栓连接结构失效的显著影响给整体结构带来了安全隐患。为准确评估湿热环境对混合螺栓连接静力失效的影响,基于复合材料渐进损伤模型及金属韧性断裂准则,建立了考虑湿热效应的复合材料-金属螺栓连接静力失效预测模型。采用该模型预测了CFRP复合材料-铝合金单钉双剪连接结构在23℃干态、70℃平衡吸湿状态下的静强度和失效模式,与试验结果吻合良好,验证了模型的有效性。在此基础上,进一步揭示了不同湿热工况对CFRP复合材料-铝合金单钉双剪、多钉双剪连接结构静力拉伸失效的影响规律。结果表明:相比于23℃干态条件,23℃平衡吸湿条件、70℃干态条件和70℃平衡吸湿条件下CFRP复合材料-铝合金单钉双剪连接结构的失效载荷分别下降了4.5%、7.2%和13.9%;高温是导致湿热环境中CFRP复合材料层板损伤区域增大的主要因素;随着螺栓数目的增加,70℃平衡吸湿状态时连接结构静强度相比于23℃干态的下降幅度逐渐降低。

     

    Abstract: The significant influence of the hygrothermal environment on the failure of the carbon fiber reinforced polymer (CFRP) composite-aluminum alloy bolted joints has threatened the safety of the overall structures. In order to accurately assess the influence of hygrothermal environment on the quasi-static failure of CFRP composite-metal bolted joints, a quasi-static failure prediction model of composite-metal bolted joints considering hygrothermal effects was established, based on the existing progressive damage analysis of composites and Ductile damage criteria of metal. This model is validated by good consistency between the numerical and experimental results of CFRP composite-aluminum alloy single-bolt double-lap joints under 23℃/dry and 70℃/wet conditions, respectively. The proposed model was further used to reveal the influence laws of different hygrothermal environments on the quasi-static tensile failure of CFRP composite-aluminum alloy single-bolt double-lap and multi-bolt double-lap joints. The research shows that the failure loads of the single-bolt double-lap joints under 23℃/wet condition, 70℃/dry condition and 70℃/wet condition are reduced by 4.5%, 7.2% and 13.9%, respectively, compared with 23℃/dry condition. The high temperature condition is the main factor that leads to the increase of the failure area above the CFRP composite laminate under hygrothermal environments. As the number of the bolt increases, the declining degree of the quasi-static failure strength under 70℃/wet condition decreases gradually compared with 23℃/dry condition.

     

/

返回文章
返回