钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型

Experiment on stress-strain behavior and constitutive model of steel fiber-rubber/ concrete subjected to uniaxial compression

  • 摘要: 将钢纤维(SF)掺入橡胶混凝土中,能够改善由于橡胶颗粒掺入导致的强度降低,并进一步增加延性。为研究SF-橡胶/混凝土的抗压性能,配制得到SF体积分数分别为0vol%、0.5vol%、1.0vol%和1.5vol%及橡胶颗粒等体积替换砂率为0%、10%和20%的10组SF-橡胶/混凝土试件,并进行单轴受压全曲线试验。结果表明:SF的桥联作用及其与橡胶颗粒的协同作用可改善混凝土的抗压性能,试件破坏呈明显延性特征。随SF掺量的增加,SF-橡胶/混凝土试件的抗压强度及弹性模量均明显增大,其相应峰值应力的应变及全曲线峰值后延性也相应增加;随橡胶颗粒掺量的增加,SF-橡胶/混凝土试件相应峰值应力的应变及全曲线峰值后延性增加,而抗压强度及弹性模量有所减小。在已有研究基础上,通过曲线拟合试验数据,提出适用于SF-橡胶/混凝土的单轴受压应力-应变全曲线数学表达式,模型与试验结果吻合较好,为此类混凝土的结构分析设计提供了理论基础。

     

    Abstract: Adding steel fiber (SF) into rubber concrete can improve the strength reduction caused by the incorporation of rubber particles, and further increase the ductility. Ten groups of SF-rubber/concrete under uniaxial compression were conducted in order to study the compressive properties. The crumb rubber particles were incorporated at different percentages of 0%, 10% and 20% by volume substation of sand, and SF with volume fraction of 0vol%, 0.5vol%, 1.0vol%, and 1.5vol% were added to the concrete mixture. The results show that the bridging action of SF and its positive synergy with rubber particles in SF-rubber/concrete can improve the compressive behavior of concrete. The failure process of SF-rubber/concrete specimens is mild and slow, and the failure mode is obviously ductile. After adding SF, the compressive strength and elastic modulus of the SF-rubber/concrete increase obviously, and the strains at the peak stress and the post-peak ductility increase. With the increase of rubber particles, the strain at the peak stress and the post-peak ductility of SF-rubber/concrete further increase. But the compressive strength and elastic modulus of SF-rubber/concrete are reduced by adding rubber particles. Based on the test data and the literature of stress-strain curve expression, a more suitable analytical model was proposed to generate the stress-strain curve of SF-rubber/concrete, which can be applied in the analysis and design of SF-rubber/concrete structural members.

     

/

返回文章
返回