Abstract:
In-situ synthesis of bimetallic Zn/Co-zeolitic imidazolate frameworks (ZIF) was successfully achieved by electrochemical method. The optimal synthesis conditions of the Zn/Co-ZIF were explored by changing the reaction solvent ratio, the applied voltage and the amount of metal cobalt salt added. The results show that Zn/Co-ZIF with irregular layered particle structure is obtained under the conditions of the volume ratio of N,N-dimethylformamide (DMF) to ethanol (EtOH) is 1∶4, the applied voltage is 5 V, and the added metal cobalt salt is 0.08 g. The electrode was prepared with Zn/Co-ZIF as the active material for the study of supercapacitor performance, and compared with ZIF-8 synthesized in situ by electrochemical method under the same conditions. Capacitance performance was explored through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The results show that the CV curves of Zn/Co-ZIF electrode materials at different scanning speeds have a pair of redox peaks, which show obvious pseudo-capacitance characteristics. At a current density of 1 A/g, the specific capacitance of the Zn/Co-ZIF electrode material is 189 F/g, which is higher than that of the ZIF-8 electrode (72 F/g). After 2000 cycles, the specific capacitance value is still can maintain 90.5% of the initial value.