Electrochemical synthesis of Zn/Co-ZIF material and capacitive properties
-
摘要: 采用电化学法原位合成双金属Zn/Co-类沸石类咪唑骨架材料(ZIF)。通过改变反应溶剂配比、电压大小、反应时间及金属钴盐添加量来探究材料的最佳合成条件。在N,N-二甲基甲酰胺(DMF)与乙醇(EtOH)的体积比为1∶4,外加电压为5 V,外加金属钴盐为0.08 g时,合成不规则层状颗粒结构的Zn/Co-ZIF。以Zn/Co-ZIF为活性物质制备电极用于超级电容器性能研究,并与同条件下电化学法原位合成的ZIF-8作对比。通过循环伏安(CV)、恒电流充放电(GCD)及交流阻抗(EIS)等测试手段探究其电容性能。结果表明,不同扫描速度下Zn/Co-ZIF电极材料的CV曲线有一对氧化还原峰,表现出明显的赝电容特性。在1 A/g的电流密度下,Zn/Co-ZIF电极材料的比电容为189 F/g,高于ZIF-8电极(72 F/g),2000次循环后,比电容值仍能保持初始值的90.5%。Abstract: In-situ synthesis of bimetallic Zn/Co-zeolitic imidazolate frameworks (ZIF) was successfully achieved by electrochemical method. The optimal synthesis conditions of the Zn/Co-ZIF were explored by changing the reaction solvent ratio, the applied voltage and the amount of metal cobalt salt added. The results show that Zn/Co-ZIF with irregular layered particle structure is obtained under the conditions of the volume ratio of N,N-dimethylformamide (DMF) to ethanol (EtOH) is 1∶4, the applied voltage is 5 V, and the added metal cobalt salt is 0.08 g. The electrode was prepared with Zn/Co-ZIF as the active material for the study of supercapacitor performance, and compared with ZIF-8 synthesized in situ by electrochemical method under the same conditions. Capacitance performance was explored through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The results show that the CV curves of Zn/Co-ZIF electrode materials at different scanning speeds have a pair of redox peaks, which show obvious pseudo-capacitance characteristics. At a current density of 1 A/g, the specific capacitance of the Zn/Co-ZIF electrode material is 189 F/g, which is higher than that of the ZIF-8 electrode (72 F/g). After 2000 cycles, the specific capacitance value is still can maintain 90.5% of the initial value.
-
碳化钨颗粒增强钢铁基(WCP/Fe)复合材料因兼顾金属基体的良好韧性与陶瓷增强颗粒的高强度、高硬度、高模量而广泛应用于机械制造、能源开发、交通运输等领域,但基体与增强颗粒间热物理性能差异过大使复合材料在激冷激热环境下服役时产生热应力,诱发界面处裂纹的萌生与扩展[1-4]。而将WC充分溶解,W在熔体中均匀扩散形成合金化复合层能有效解决该问题,故研究WC/Fe复合材料中W扩散均匀性十分必要[5-7]。
蜂窝结构因形状连续、比强度高等特性而对复合材料的综合性能产生重要影响[8-10]。Magotteaux公司发明X-win蜂窝结构ZTAP/Fe复合材料技术,制造的磨辊使用寿命提高两倍以上[11];WU等[12]从模拟与实验角度出发,揭示预制体孔径与孔距作为蜂窝结构重要参数对复合材料力学性能的影响;SONG等[13]成功制备蜂窝结构还原氧化石墨烯增强环氧树脂(rGH/EP)复合材料,电磁屏蔽效能与导电性明显提升。但对蜂窝预制体结构与元素扩散均匀性间的关联机制仍研究较少。
本文采用真空消失模铸渗(V-EPC)工艺制备WC/Fe复合材料[14-15],选取孔径孔距比相同孔径不同的蜂窝预制体,并将W质量分数最高与最低的预制体原孔壁与原孔心处W质量分数作为W扩散均匀性的判断条件[16-17]。表征复合层的显微组织、物相组成、元素分布,并检测预制体原孔壁与原孔心处W质量分数、硬度及复合层耐磨性,揭示其孔径对W质量分数分布的影响规律。通过求解非稳态扩散方程得解析解,对预制体孔内熔体凝固时的热物理场进行有限元模拟,并通过二次开发程序对其原孔内W质量分数分布进行数值模拟,揭示其孔径对W扩散均匀性的影响机制;提出W扩散均匀性与复合层耐磨性间的关联机制,为工程应用提供理论依据。
1. 实验材料与方法
为避免铸渗时W粉因粒径过小而大量烧损,选取铸造WC颗粒(WC/W2CP)为合金化提供W;表1为WC/Fe复合材料中预制体的成分组成,配置预制体粉末300 g,与5wt%水玻璃粘结剂均匀混合;表2为WC/Fe复合材料中预制体的结构参数,填充到预制体孔径孔距比相同孔径不同的蜂窝模具内,其轮廓为50 mm×100 mm×6 mm;采用CO2硬化与微波烧结方法,得最终预制体。
表3为WC/Fe复合材料中基体的成分组成。配置基体并采用中频感应炉熔炼20 kg。图1为WC/Fe复合材料的制备过程,采用V-EPC工艺成型,浇注温度为1 500℃,型腔负压为0.05 MPa。
表 1 WC/Fe复合材料中预制体的成分Table 1. Composition of preform in WC/Fe compositesComposition Mass fraction/wt% Size/μm WC 40 150-200 Ni60 30 60-90 FeCr55C6.0 30 150-200 表 2 WC/Fe复合材料中预制体的结构参数Table 2. Structure parameters of preform in WC/Fe compositesDiameter R/mm Distance d/mm Number n 3 6 63 6 12 16 9 18 7 表 3 WC/Fe复合材料中基体的成分Table 3. Composition of matrix in WC/Fe compositesComposition C Cr Mn Si Fe Mass fraction/wt% 1.2-1.3 18.0-20.0 0.4-0.6 1.0-1.2 Balance 采用尼康MA200型OM表征复合层显微组织,并统计预制体原孔壁与原孔心处平均晶粒尺寸分布。采用岛津7000S/L型XRD、牛津仪器Ultim Extreme型EDS面扫描表征复合层物相组成、元素分布。采用牛津仪器Ultim Extreme型EDS点扫描、上海光学仪器厂HX1000型显微硬度计表征复合层预制体原孔壁与原孔心处元素质量分数、硬度。采用广州试验仪器厂MS-5E型三体磨料磨损机表征复合层耐磨性,载荷为2 kg、转速为40 r/min、预磨时间为30 min、磨粒粒径为200~550 μm,并采用蔡司EVO18型SEM表征预制体原孔心处磨损形貌。采用COMSOL Multiphysics 5.4有限元模拟预制体孔内熔体凝固时的热物理场。采用MATLAB R2015b通过二次开发程序数值模拟预制体原孔内W质量分数分布。
2. 结果与分析
2.1 WC/Fe复合材料复合层的显微组织与元素分布
图2为不同预制体孔径下WC/Fe复合材料复合层的显微组织。熔体填充预制体孔洞,WC高温下分解,W由其孔壁扩散至孔心处,形成复合层。图3为不同预制体孔径下WC/Fe复合材料复合层原孔内的平均晶粒尺寸分布,随预制体孔径增加,其原孔壁处晶粒尺寸基本不变,而在其原孔心处先减小后增大。
图4为不同预制体孔径下WC/Fe复合材料复合层原孔内的平均晶粒尺寸分布。表明复合层中均形成W2C、WC、Ni17W3、Fe3W3C、(Fe,Cr)3C。根据W-C相图,WC/W2CP中WC分解形成W2C、C,而C扩散到熔体中使(Fe,Cr)3C增多;根据Fe-W-C相图,熔体与W2C发生包晶反应形成Fe3W3C;WC、Ni60分解使W、Ni质量分数增加,形成镍钨化合物Ni17W3。
根据Fe-Cr-C相图[18-19],推测熔体(Cr:18.0wt%~20.0wt%,C:1.2wt%~1.3wt%)为典型亚共晶成分合金(Cr:11.0wt%~30.0wt%,C:<2.8wt%),凝固时先析出一次奥氏体枝晶,待温度降至共晶点发生共晶转变形成共晶奥氏体与二次碳化物的混合共晶组织,而复合层为网状形貌的M3C型碳化物[7,20]。图5为不同预制体孔径下WC/Fe复合材料复合层的元素分布。Cr分布在共晶奥氏体与二次碳化物中,W、Ni弥散分布在一次奥氏体枝晶内。
图6为不同预制体孔径下WC/Fe复合材料复合层原孔内的W质量分数分布。其原孔壁处W质量分数较高,而在其原孔心处较低。与晶粒尺寸的变化相反,随预制体孔径增加,其原孔壁处W质量分数基本不变,而在其原孔心处先增大后减小。为进一步表征W扩散均匀性,通过计算得不同预制体孔径下W扩散均匀性分别为84.1%、88.7%、86.9%,表明W扩散均匀性随其孔径增加而先增大后减小,W扩散均匀性的表达式为
δ=1−2√3πR2C(0,tmax (1) 式中:δ为W扩散均匀性;C(0,tmax)、C(R/2,tmax)分别为预制体原孔壁、原孔心处W质量分数。
2.2 WC/Fe复合材料复合层的硬度分布与耐磨性
图7为不同预制体孔径下WC/Fe复合材料复合层原孔内的硬度分布。其原孔壁处硬度较高,而在其原孔心处较低。与W质量分数的变化相同,随预制体孔径增加,其原孔壁处硬度基本不变,而在其原孔心处先增大后减小。图8为不同预制体孔径下WC/Fe复合材料复合层原孔心处的磨损形貌。R=3 mm时其原孔心处犁沟最明显,R=9 mm时次之,R=6 mm时最不明显。图9为不同预制体孔径下WC/Fe复合材料复合层的磨损量。表明复合层耐磨性随其孔径增加而先增大后减小。
2.3 WC/Fe复合材料复合层的W扩散均匀性机制
为进一步探究影响W扩散均匀性的因素,对预制体原孔内W质量分数分布进行数值模拟。将W扩散区看作受固液界面移动驱动的半无限大物体,且扩散时间近似为预制体孔内熔体凝固时间[21-22]。下式为W扩散区边界条件的表达式:
\left\{ \begin{array}{l} C\left( {x,t} \right) = {C_{{\rm{SL}}}},x = x\left( t \right) \\ C\left( {x,t} \right) = {C_{{\rm{LS}}}},x < x\left( t \right) \end{array}\right. (2) 式中,CSL、CLS分别为固液界面固、液相侧W质量分数。根据Arrhenius方程,W质量分数分布为
\left\{ \begin{array}{l} C\left( {x,t} \right) = \dfrac{{{C_{{\rm{SL}}}}}}{{{\rm{erf}}\left( k \right) - 1}}\left( {{\rm{erf}}\left( {\dfrac{x}{{2\sqrt {Dt} }}} \right) + 1} \right) \\ D = {D_0}{\rm{exp}}\left( { - \dfrac{{{E_{\rm{A}}}}}{{{k_{\rm{B}}}T}}} \right) \end{array} \right. (3) 式中:x为W扩散距离;t为W扩散时间;T为W扩散温度;D为W扩散系数;k为常数;EA为W元素扩散激活能;kB为玻尔兹曼常数[22]。W扩散总时间为
{t_{{\rm{max}}}} = \frac{{{R^2}}}{{64{k^2}D}} (4) 通过解析解得W扩散过程同时受温度与固液界面移动影响。故先采用有限元模拟软件COMSOL Multiphysics 5.4模拟预制体孔内熔体凝固时的温度场与相场,表4为预制体孔内熔体凝固时热物理场模拟的参数设置。图10为预制体孔内熔体凝固时热物理场的有限元模拟。发现固液界面明显存在,且其左侧温度较高,熔体为液相,而其右侧温度较低,熔体为固相,即其孔壁处熔体先凝固,且固液界面移动驱动W扩散。此外,随预制体孔径增加,其孔内熔体高温区增多,使其平均温度增高,W扩散系数受W扩散温度影响,扩散温度越高扩散系数越大,其原孔内W质量分数分布曲线斜率绝对值越大;图11为不同预制体孔径下WC/Fe复合材料复合层原孔内W质量分数分布的数值模拟。再将该有限元模拟结果代入数学分析软件MATLAB R2015b的二次开发程序中进行数值模拟,最终得其原孔内W质量分数分布曲线,发现其原孔内W质量分数为W扩散距离的单调递减函数。因预制体孔径孔距比相同且W扩散区为受固液界面移动驱动的半无限大物体,故设置W初始质量分数相同。随预制体孔径增加,其原孔内W质量分数分布曲线斜率绝对值增大,故R=3 mm时其原孔心处W质量分数较R=6 mm时低,但R=6 mm时W扩散距离较R=9 mm时短,故其原孔心处W质量分数R=6 mm时最高,R=9 mm时次之,R=3 mm时最低,即该数值模拟与实验结果相符。
表 4 预制体孔内熔体凝固时热物理场模拟的参数设置Table 4. Parameters setting of thermal physical field simulation when internal matrix of preform solidifiesPhase Density/(kg·m−3) Thermal conductivity/(W·m−1·K−1) Heat capacity/(J·kg−1·K−1) Fe(s) 8 500 200 400 Fe(l) 7 800 450 550 Inlet temperature/°C Melting temperature/°C Temperature transition half width/K Surface emissivity 1 500 1 100 50 0.8 Specific heat/(J·kg−1·K−1) Solidification latent heat/(kJ·kg−1) Heat transfer coefficient/(W·m−2·K−1) 60 200 800 预制体孔径较大时,其孔内熔体较多,温度也较高。一方面扩散时间较长,有利于W扩散;另一方面扩散距离较长,不利于W扩散均匀,使预制体原孔心处W质量分数降低。同理,预制体孔径较小时,扩散距离虽短,但扩散时间较短,使W扩散不充分,其原孔心处W质量分数较低,故W扩散均匀性也较低;故预制体孔径适中时,因兼顾扩散距离与扩散时间而使W扩散均匀性最高。综上所述,W扩散过程同时受扩散距离与扩散时间的影响。
2.4 WC/Fe复合材料复合层的耐磨性与W扩散均匀性间关联机制
亚共晶Fe-Cr-C系合金中含大量低硬度、高韧性的一次奥氏体,硬度、耐磨性较低,而W弥散分布在一次奥氏体枝晶内形成M6C型碳化物Fe3W3C,细化晶粒使复合层冲击韧性未明显降低,且引入硬质相使其硬度明显提高[20,23],一定范围内也提高其耐磨性[24]。W扩散均匀性越高,预制体原孔心处W质量分数越高,形成硬质相越多,硬度也越高,最终提高复合层耐磨性。
3. 结 论
采用真空消失模铸渗(V-EPC)工艺制备WC/Fe复合材料,选取预制体孔径孔距比相同孔径不同的蜂窝预制体,并将其原孔壁与原孔心处W质量分数作为W扩散均匀性的判断条件,得如下结论。
(1) WC高温下分解,W由预制体孔壁至孔心处扩散,形成弥散分布的硬质相Fe3W3C。
(2)预制体原孔壁与原孔心处W质量分数与硬度相差随孔径增加而先增大后减小,复合层耐磨性的变化亦然。
(3) W扩散均匀性同时受扩散距离与扩散时间的影响。预制体孔径较小时,扩散距离虽短,但扩散时间较短,不利于W扩散;预制体孔径较大时,扩散时间虽长,但扩散距离增长,仍不利于W扩散;预制体孔径适中时,因兼顾扩散距离与扩散时间,利于W扩散。
(4)耐磨性与W扩散均匀性间存在关联,W扩散均匀性越高,预制体原孔心处W质量分数越高,形成硬质相越多,硬度也越高,一定范围内复合层耐磨性也越高。
-
图 6 ZIF-8和Zn/Co-ZIF材料的循环伏安曲线(a)、不同扫描速率下Zn/Co-ZIF材料的循环伏安曲线(b)及Zn/Co-ZIF材料峰电流与扫描速率平方根的线性关系(Ia和Ic分别为阳极和阴极电流) (c)
Figure 6. CV curves of Zn/Co-ZIF material and ZIF-8 (a), Cyclic voltammetry curves of Zn/Co-ZIF material at different scanning rates (b) and Linear relationship between Zn/Co-ZIF material peak current and square root of scan rate (Ia and Ic represent anode current and cathode current, respectively) (c)
v—Scanning rate
图 7 Zn/Co-ZIF材料和ZIF-8在1 A/g下恒电流充放电曲线(a)、不同电流密度下Zn/Co-ZIF材料的恒电流充放电曲线(b)及Zn/Co-ZIF材料和ZIF-8的倍率特性曲线和(c)循环稳定性(d)
Figure 7. GCD curves of Zn/Co-ZIF material and ZIF-8 at 1 A/g (a), GCD curves of Zn/Co-ZIF material at different current (b), rate capability curves (c) and cycling stability (d) of Zn/Co-ZIF material and ZIF-8
-
[1] 李艺, 张琳. 能源转型背景下传统能源与新能源发展的思考[J]. 电力勘测设计, 2020(4):66-71. LI Y, ZHANG L. Thought on the development of the traditional energy and new energy in the context of energy transition[J]. Elecctric Power Survey & Design,2020(4):66-71(in Chinese).
[2] ZHANG Q F, UCHAKER E, CANDELARIAS L, et al. Nanomaterials for energy conversion and storage[J]. Chemical Society Reviews,2013,42(7):3127-3171.
[3] 肖谧, 宿玉鹏, 杜伯学. 超级电容器研究进展[J]. 电子元件与材料, 2019, 38(9):1-12. XIAO M, SU Y P, DU B X. Research progress of supercapacitors[J]. Electronic Components and Materials,2019,38(9):1-12(in Chinese).
[4] YAN J, WANG Q, WEI T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials,2014,4(4):1300816.
[5] CHENG Y W, ZHANG H B, LU S T, et al. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes[J]. Nanoscale,2013,5(3):1067-1073.
[6] 郑文庆, 郑玉婴, 张祥, 等. NiCo2O4复微球的制备及其电化学性能[J]. 复合材料学报, 2017, 34(9):1982-1988. ZHENG W Q, ZHENG Y Y, ZHANG X, et al. Synthesis and electrochemical properties of NiCo2O4 microsphere[J]. Acta Materiae Compositea Sinica,2017,34(9):1982-1988(in Chinese).
[7] 孙银, 黄乃宝, 王东超, 等. 赝电容型超级电容器电极材料研究进展[J]. 电源技术, 2018, 45(5):747-750. DOI: 10.3969/j.issn.1002-087X.2018.05.046 SUN Y, HUANG N B, WANG D C, et al. Research progress of electrode materials for pseudosuper-capacitor[J]. Chinese Journal of Power Source,2018,45(5):747-750(in Chinese). DOI: 10.3969/j.issn.1002-087X.2018.05.046
[8] YANG H M, LIU X, SONG X L. In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr[J]. Transactions of Nonferrous Metals Society of China,2015,25(12):3987-3994.
[9] EDDAOUDI M, LI H, YAGHI O M. Highly porous and stable metal-organic frameworks: Structure design and sorption properties[J]. Journal of the American Chemical Society,2000,122(7):1391-1397.
[10] EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science,2002,295(5554):469-472.
[11] 张政, 刘洪达, 宋朝霞, 等. 聚苯胺包覆CoFe类普鲁士蓝复合材料的超电容性能[J]. 复合材料学报, 2020, 37(3):731-739. ZHANG Z, LIU H D, SONG C X, et al. Super-capactive performance of polyaniline coated CoFe Prussian blue analogue composite[J]. Acta Materiae Compositea Sinica,2020,37(3):731-739(in Chinese).
[12] BANERJEE R, FURUKAWA H, BRITT D, et al. Control of pore size and functionality inisoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. Journal of the American Chemical Society,2009,131(11):3875-3872.
[13] ZHANG H, DERIA P, FARHA O K, et al. Ather-modynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks[J]. Energy & Environmental Science,2015,8(5):1501-1510.
[14] 王亮, 田聃, 刘安琪, 等. GO@MIL-101的制备及其对水中Cr(Ⅵ)的去除[J]. 化工学报, 2017, 68(5):2105-2111. WANG L, TIAN D, LIU A Q, et al. Preparation of grapheme oxide@MIL-101 composite and its performance in Cr(Ⅵ) removal from aqueous solution[J]. CIESC Journal,2017,68(5):2105-2111(in Chinese).
[15] HUANG Y K, HONG D Y, CHANG J S, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation[J]. Angewandte Chemie International Edition,2008,47(22):4144-4148.
[16] CUI Y, YUE Y, QIAN G, et al. Luminescent functional metal-organic frameworks[J]. Chemical Reviews,2012,112(2):1126-1162.
[17] LI H, HAN Y, SHAO Z. Water-stable Eu-MOF fluorescent sensors for trivalent matal ionsand nitrobenzene[J]. Dalton Transactions,2017,46(36):12201-12208.
[18] 杨江峰, 元宁, 杜冰洁, 等. 双金属金属有机骨架材料的制备及性能研究进展[J]. 应用化学, 2018, 35(5):500-510. DOI: 10.11944/j.issn.1000-0518.2018.05.170243 YANG J F, YUAN N, DU B J, et al. Research progress in preparation technology and application of bimetal metal-organic frameworks materials[J]. Chinese Journal of Applied Chemistry,2018,35(5):500-510(in Chinese). DOI: 10.11944/j.issn.1000-0518.2018.05.170243
[19] ZHANG W, SHI Y, LI C, et al. Synthesis bimetallic MOFs MIL-100 (Fe-Mn) as an efficient catalyst for selective catalytic reduction of NOx with NH3[J]. Catalysis Letters,2016,146(10):1956-1964.
[20] 欧阳金波, 那兵, 周利民, 等. 基于MOF结构的超级电容器电极材料研究进展[J]. 华东理工大学学报, 2018, 41(3):267-270. OUYANG J B, NA B, ZHOU L M, et al. MOF-based electrode materials for supercapacitor[J]. Journal of East China University of Technology,2018,41(3):267-270(in Chinese).
[21] 付韫珒, 熊传溪. 双金属MOF基复合结构材料及其超级电容器性能[J]. 储能科学与技术, 2018, 7(3):495-501. FU Y J, XIONG C X. Double metal MOF-based composite structure and performance as super-capacitor electrode[J]. Energy Storage Science and Technology,2018,7(3):495-501(in Chinese).
[22] ZHENG S, LI X, YAN B, et al. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage[J]. Advanced Energy Materials,2017,7(18):1602733.
[23] QIU C, CAI F, WANG Y, et al. 2-Methylimidazole directed ambient synthesis of zinc-cobalt LDH nanosheets for efficient oxygen evolution reaction[J]. Journal of Colloid and Interface Science,2020,565:351-359.
[24] 郭誉, 刘咏. Ni2+复合MOF-5材料的制备工艺及其电化学性能研究[J]. 粉末冶金工业, 2017, 27(2):51-57. GUO Y, LIU Y. Preparation and electrochemical performance of Ni2+-doped MOF-5 crystals[J]. Powder Metallurgy Industry,2017,27(2):51-57(in Chinese).
[25] CAO F F, GAN M Y, MA L, et al. Hierarchical sheet-like Ni-Co layered double hydroxide derived from a MOF template for high-performance supercapacitors[J]. Synthetic Metals,2017,234:154-160.
[26] WANG L, HAN YZ, FENG X, et al. Metal-organic frameworks for energy storage: Batteries and supercapacitors[J]. Coordination Chemistry Reviews,2016,307:361-381.
[27] LI T, LI C, HU X, et al. Reversible lithium storage in manganese and cobalt 1,2,4,5-benzenet-etracarboxylate metal-organic framework with high capacity[J]. RSC Advances,2016,6(66):61319-61324.
[28] WEI J Z, WANG X L, SUN X J, et al. Rapid and large-scale synthesis of IRMOF-3 by electrochemistry method with enhanced fluorescence detection performance for TNP[J]. Inorganic Chemistry,2018,57(7):3818-3824.
[29] LI W J, LU J, GAO S Y, et al. Electrochemical preparation of metal-organic framework films for fastdetection of nitro explosives[J]. Journal of Materials Chemistry A,2014,2(45):19473.
[30] LOU X, NING Y, LI C, et al. Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms[J]. Science China Materials,2018,61(8):1040-1048.
[31] DONG Y L, LU B, ZANG S, et al. Removal of methylene blue from coloured effluents by adsorption onto SBA-15[J]. Journal of Chemical Technology & Biotechnology,2011,86(4):616-619.
[32] YANG J, ZHANG F, LU H, et al. Hollow Zn/Co-ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene[J]. Angewandte Chemie International Edition,2015,54(37):10889-10893.
-
期刊类型引用(0)
其他类型引用(1)
-