CFRP层间碳纳米管定向喷涂工艺及断裂韧性研究

蒋鹏, 王仲奇, 常正平, 杨宗琪, 周旭, 冯征昊

蒋鹏, 王仲奇, 常正平, 等. CFRP层间碳纳米管定向喷涂工艺及断裂韧性研究[J]. 复合材料学报, 2021, 38(2): 496-505. DOI: 10.13801/j.cnki.fhclxb.20200824.004
引用本文: 蒋鹏, 王仲奇, 常正平, 等. CFRP层间碳纳米管定向喷涂工艺及断裂韧性研究[J]. 复合材料学报, 2021, 38(2): 496-505. DOI: 10.13801/j.cnki.fhclxb.20200824.004
JIANG Peng, WANG Zhongqi, CHANG Zhengping, et al. Interlaminar aligned carbon nanotubes spraying process and fracture toughness of CFRP[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 496-505. DOI: 10.13801/j.cnki.fhclxb.20200824.004
Citation: JIANG Peng, WANG Zhongqi, CHANG Zhengping, et al. Interlaminar aligned carbon nanotubes spraying process and fracture toughness of CFRP[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 496-505. DOI: 10.13801/j.cnki.fhclxb.20200824.004

CFRP层间碳纳米管定向喷涂工艺及断裂韧性研究

基金项目: 陕西省重点研发计划(2019ZDLGY02-02);硕士研究生创意创新种子基金(ZZ2019096)
详细信息
    通讯作者:

    王仲奇,硕士,教授,博士生导师,研究方向复合材料增强增韧及自治愈技术 E-mail:wangzhqi@nwpu.edu.cn

  • 中图分类号: TB332;TB306

Interlaminar aligned carbon nanotubes spraying process and fracture toughness of CFRP

  • 摘要: 为了提高碳纤维增强树脂基复合材料(CFRP)层间性能,采用共沉淀法在碳纳米管上接枝磁性Fe3O4粒子,通过定向喷涂工艺使磁性碳纳米管(Fe3O4-MWCNTs)在碳纤维表面取向一致,并喷涂树脂加以固定,形成碳纤维-定向碳纳米管-树脂界面,采用真空辅助树脂渗透成形(Vacuum assisted resin infusion, VARI)工艺制备层间性能优异的Fe3O4-MWCNTs层间定向增强CFRP。试验结果表明,喷涂树脂可改善和巩固定向喷涂工艺。与未加磁场喷涂工艺相比,当Fe3O4-MWCNTs的质量分数为0.3wt%时,采用定向喷涂工艺试件的I型层间断裂韧性(GIC)提升幅度最大,GIC提高了37.7%。断面形貌分析表明其增强机制以树脂的塑性变形、Fe3O4-MWCNTs棒状聚集体的拔出及树脂塑性孔洞的生长为主。该研究为具有可控定向行为的磁性碳纳米管改性CFRP层间力学性能提供了新思路与方法。
    Abstract: Co-precipitation method was applied for grafting magnetic Fe3O4 particles on carbon nanotubes. In order to improve the interlayer properties of carbon fiber reinforced polymer (CFRP), the magnetic carbon nanotubes (Fe3O4-MWCNTs) were aligned on the surface of carbon fiber by spraying process after exposure to magnetic field to form ‘carbon fiber-aligned carbon nanotubes-resin’ interface, and were fixed by spraying the resin. Aligned Fe3O4-MWCNTs-reinforced CFRP with excellent interlaminar properties was prepared by vacuum assisted resin infusion (VARI) molding. The test results show spraying resin plays an important role in consolidating and improving aligned spraying process. Compared with non-magnetic spraying process, when the mass fraction of Fe3O4-MWCNTs is 0.3wt%, the mode I interlaminar fracture toughness (GIC) increases by up to 37.7%. The main toughening mechanisms, which are pull-out and rupture of Fe3O4-MWCNTs aggregates, plastic deformation and plastic void growth of resin, are revealed by the fracture surface morphology. The research provides a new idea and method for interface modification of CFRP by adding Fe3O4-MWCNTs with controlled aligned behavior.
  • 图  1   磁性碳纳米管(Fe3O4-MWCNTs)粉末的磁响应

    Figure  1.   Magnetic response of magnetic carbon nanotubes (Fe3O4-MWCNTs) powder

    图  2   定向喷涂工艺设计

    Figure  2.   Design of aligned spraying process

    图  3   双悬臂梁试件侧视图

    Figure  3.   Side view of double cantilever beam specimen

    图  4   MWCNTs-COOH、Fe3O4和Fe3O4-MWCNTs的FTIR图谱

    Figure  4.   FTIR spectra of MWCNTs-COOH, Fe3O4 and Fe3O4-MWCNTs

    图  5   MWCNTs-COOH、Fe3O4和Fe3O4-MWCNTs的XRD图谱

    Figure  5.   XRD spectra of MWCNTs-COOH, Fe3O4 and Fe3O4-MWCNTs

    图  6   Fe3O4-MWCNTs的TEM图像

    Figure  6.   TEM image of Fe3O4-MWCNTs

    图  7   喷涂树脂对Fe3O4-MWCNTs层间定向增强CFRP的I型断裂韧性影响

    Figure  7.   Effect of spray resin on Model I interlaminar fracture toughness of aligned Fe3O4-MWCNTs-reinforced CFRP

    图  8   不同质量分数Fe3O4-MWCNTs下采用不同工艺CFRP的断裂韧性(GIC)

    Figure  8.   Fracture toughness (GIC) of CFRP with different processes and different mass fractions of Fe3O4-MWCNTs

    图  9   超声后不同质量分数的Fe3O4-MWCNTs乙醇分散液

    Figure  9.   Fe3O4-MWCNTs/ethanol dispersion containing different mass fractions of Fe3O4-MWCNTs after sonication

    图  10   磁场诱导对不同质量分数Fe3O4-MWCNTs CFRP的GIC影响

    Figure  10.   Effect of magnetic field induction on GIC of CFRP with different mass fractions of Fe3O4-MWCNTs

    图  11   定向喷涂0.5wt% Fe3O4-MWCNTs碳纤维表面的SEM图像

    Figure  11.   SEM images of carbon fiber surface after aligned spraying with 0.5wt% of Fe3O4-MWCNTs

    图  12   未改性CFRP断面的SEM图像

    Figure  12.   Cross-sectional SEM image of the fracture surface of the unmodified CFRP

    图  13   0.5wt%Fe3O4-MWCNTs层间非定向增强CFRP断面的SEM图像

    Figure  13.   Cross-sectional SEM image of the fracture surface of unaligned Fe3O4-MWCNTs-reinforced CFRP with 0.5wt% of Fe3O4-MWCNTs

    图  14   0.5wt%Fe3O4-MWCNTs层间定向增强CFRP断面的SEM图像

    Figure  14.   Cross-sectional SEM image of the fracture surface of aligned Fe3O4-MWCNTs-reinforced CFRP with 0.5wt% of Fe3O4-MWCNTs

    图  15   0.5wt%Fe3O4-MWCNTs层间定向增强CFRP的失效机制

    Figure  15.   Failure mechanism of aligned Fe3O4-MWCNTs-reinforced CFRP with 0.5wt% of Fe3O4-MWCNTs

    表  1   不同Fe3O4-MWCNTs质量分数下采用不同工艺成型的试件

    Table  1   Manufactured specimens by different processes with different mass farctions of Fe3O4-MWCNTs

    ProcessSpecimenMass fraction of Fe3O4-MWCNTs/wt%
    Without spraying process Unmodified CFRP 0
    Aligned spraying process without resin Comparison CFRP 0.5
    Unaligned spraying process with resin Unaligned Fe3O4-MWCNTs-reinforced CFRP 0.3 0.5 0.7 0.9
    Aligned spraying process with resin Aligned Fe3O4-MWCNTs-reinforced CFRP 0.3 0.5 0.7 0.9
    Note: CFRP—Carbon fiber reinforced polymer.
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DOI: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). DOI: 10.3321/j.issn:1000-3851.2007.01.001

    [2] 张娜, 龙春光, 何宏燕, 等. 碳纳米纤维纸-玻纤/环氧复合材料对风力发电叶片的影响[J]. 复合材料学报, 2013, 30(1):90-95.

    ZHANG N, LONG C G, HE H Y, et al. Effect of carbon nano-fiber paper-glass fiber/epoxy composite used for wind turbineblade[J]. Acta Materiae Compositae Sinica,2013,30(1):90-95(in Chinese).

    [3] 拓宏亮, 马晓平, 卢智先. 基于连续介质损伤力学的复合材料层合板低速冲击损伤模型[J]. 复合材料学报, 2018, 35(7):1878-1888.

    TUO H L, MA X P, LU Z X. A model for low velocity impact damage analysis of composite laminates based on con-tinuum damage mechanics[J]. Acta Materiae Compositae Sinica,2018,35(7):1878-1888(in Chinese).

    [4]

    KHAN S U, KIM J K. Impact and delamination failure of multiscale carbon nanotube-fiber reinforced polymer composites: A review[J]. International Journal of Aeronautical & Space Sciences,2011,12(2):115-133.

    [5]

    STORCK S, MALECKI H, SHAH T, et al. Improvements in interlaminar strength: A carbon nano-tube approach[J]. Composites Part B: Engineering,2011,42(6):1508-1516. DOI: 10.1016/j.compositesb.2011.04.039

    [6]

    WARRIER A, GODARA A, ROCHEZ O, et al. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix[J]. Composites Part A: Applied Science and Manufacturing,2010,41(4):532-538. DOI: 10.1016/j.compositesa.2010.01.001

    [7]

    FAN Z, SANTARE M H, ADVANI S G. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes[J]. Compo-sites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing),2008,39(3):540-554. DOI: 10.1016/j.compositesa.2007.11.013

    [8]

    IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. DOI: 10.1038/354056a0

    [9]

    CHOU T W, GAO L, THOSTENSON E T, et al. An assessment of the science and technology of carbon nanotube-based fibers and composites[J]. Composites Science and Technology,2010,70(1):1-19. DOI: 10.1016/j.compscitech.2009.10.004

    [10]

    SAGER R J, KLEIN P J, LAGOUDAS D C, et al. Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix[J]. Composites Science and Technology,2009,69(7-8):898-904. DOI: 10.1016/j.compscitech.2008.12.021

    [11]

    LV P, FENG Y Y, ZHANG P, et al. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers[J]. Carbon,2011,49(14):4665-4673. DOI: 10.1016/j.carbon.2011.06.064

    [12]

    AN F, LU C, GUO J, et al. Preparation of vertically aligned carbon nanotube arrays grown onto carbon fiber fabric and evaluating its wettability on effect of composite[J]. Applied Surface Science,2011,258(3):1069-1076. DOI: 10.1016/j.apsusc.2011.09.003

    [13]

    SEYHAN A T, TANOGLU M, SCHULTE K. Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites[J]. Engineering Fracture Mechanics,2008,75(18):5151-5162. DOI: 10.1016/j.engfracmech.2008.08.003

    [14]

    SHAN F L, GU Y Z, LI M, et al. Effect of deposited carbon nanotubes on interlaminar properties of carbon fiber-reinforced epoxy composites using a developed spraying processing[J]. Polymer Composites,2013,34(1):41-50. DOI: 10.1002/pc.22375

    [15]

    WILLIAMS J, GRADDAGE N, RAHATEKAR S. Effects of plasma modified carbon nanotube interlaminar coating on crack propagation in glass epoxy composites[J]. Compo-sites Part A: Applied Science & Manufacturing,2013,54(54):173-181.

    [16] 赫玉欣, 杨松, 张丽, 等. 碳纳米管有序排列对碳纤维增强环氧树脂基复合材料低温性能的影响[J]. 复合材料学报, 2017, 34(8):1693-1703.

    HE Y X, YANG S, ZHANG L, et al. Effects of aligned carbon nanotubes in matrix on mechanical properties of carbon fiber reinforced epoxy composites at cryogenic tempera-ture[J]. Acta Materiae Compositae Sinica,2017,34(8):1693-1703(in Chinese).

    [17]

    RAVINDRAN A R, LADANI R B, WU S Y, et al. Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres[J]. Composites Science and Technology,2018(167):115-125.

    [18] 周还潮, 马传国, 张晶晶. 弱磁场对EP/MWCNTs-Fe3O4复合材料结构与性能的影响[J]. 工程塑料应用, 2015, 43(10):7-12. DOI: 10.3969/j.issn.1001-3539.2015.10.002

    ZHOU H C, MA C G, ZHANG J J, et al. Effects of low magnetic field on structure and properties of epoxy/MWCNTS-Fe3O4 composites[J]. Engineering Plastics Application,2015,43(10):7-12(in Chinese). DOI: 10.3969/j.issn.1001-3539.2015.10.002

    [19] 董怀斌, 李长青, 任攀, 等. 碳纳米管定向排列增强碳纤维/环氧树脂复合材料制备及力学性能[J]. 玻璃钢/复合材料, 2017(7):22-28.

    DONG H B, LI C Q, REN P, et al. Preparation and mechanical properties of carbon nanotube aligned carbon fiber/epoxy composites[J]. Fiber Reinforced Plastics/Compo-sites,2017(7):22-28(in Chinese).

    [20] 陈伟, 郑亚萍. Fe3O4-MWCNTs在环氧树脂中的定向排列[J]. 复合材料学报, 2013, 30(6):54-59. DOI: 10.3969/j.issn.1000-3851.2013.06.008

    CHEN W, ZHENG Y P. Alignment of Fe3O4-MWCNTs in epoxy resin[J]. Acta Materiae Compositae Sinica,2013,30(6):54-59(in Chinese). DOI: 10.3969/j.issn.1000-3851.2013.06.008

    [21]

    MA C G, LIU H Y, DU X S, et al. Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field[J]. Composites Science and Technology,2015(114):126-135.

    [22]

    THAKRE P R, LAGOUDAS D C, RIDDICK J C, et al. Investigation of the effect of single wall carbon nanotubes on interlaminar fracture toughness of woven carbon fiber-epoxy composites[J]. Journal of Composite Materials,2011,45(10):1091-1107. DOI: 10.1177/0021998310389088

    [23] 中国航空工业总公司, 碳纤维复合材料层合板I型层间断裂韧性GIC试验方法: HB 7402—1996[S]. 北京: 中国航空工业总公司, 1996.

    Aviation Industry Corporation of China. Test method for mode I interlaminar fracture toughness GIC of CFRP laminates: HB 7402—1996[S]. Beijing: Aviation Industry Corporation of China, 1996(in Chinese).

    [24]

    CUNHA C, PANSERI S, IANNAZZO D, et al. Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications[J]. Nanotechnology,2012,23(46):465102. DOI: 10.1088/0957-4484/23/46/465102

    [25]

    RAVINDRAN A R, LADANI R B, WU S, et al. Multi-scale toughening of epoxy composites via electric field alignment oi carbon nanofibres and short carbon fibres[J]. Composites Science and Technology,2018,167(OCT. 20):115-125.

    [26]

    ISLAM M F, ROJAS E, BERGEY D M, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nano Letters,2003,3(2):269-273. DOI: 10.1021/nl025924u

    [27]

    SIDDIQUI N A, KHAN S U, KIM J K. Experimental torsional shear properties of carbon fiber reinforced epoxy compo-sites containing carbon nanotubes[J]. Composite Structures,2013,104(5):230-238.

    [28]

    ELISA B, ESLAM S, USAMA K, et al. Interlaminar fracture toughness of CFRP laminates incorporating multi-walled carbon nanotubes[J]. Polymers,2015,7(6):1020-1045. DOI: 10.3390/polym7061020

    [29]

    KHAN S U, POTHNIS J R, KIM J K. Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites[J]. Composites Part A: Applied science and Manufacturing,2013,49:26-34. DOI: 10.1016/j.compositesa.2013.01.015

    [30]

    WU S Y, LADANI R B, ZHANG J, et al. Epoxy nanocompo-sites containing magnetite-carbon nanofibers aligned using a weak magnetic field[J]. Polymer,2015,68:25-34. DOI: 10.1016/j.polymer.2015.04.080

  • 期刊类型引用(8)

    1. 丁能鑫,侯夫庆,杨会康,张春辉. 石英纤维的表面改性及分散特性研究. 中国造纸. 2023(06): 56-63 . 百度学术
    2. 杨娜,苏韬,黄锴荻,王文俊. 通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能. 复合材料学报. 2023(09): 5002-5010 . 本站查看
    3. 束长朋,王茂源,周权,宋宁,倪礼忠. 苯并噁嗪-氨基稀释剂改性硅炔杂化树脂及其复合材料性能. 复合材料学报. 2020(11): 2718-2725 . 本站查看
    4. 成滨,扈艳红,邓诗峰,杜磊,周燕,杨藤,崔方旭. 一种含腈基的硅烷偶联剂改性石英纤维/含硅芳炔复合材料. 复合材料学报. 2019(03): 545-554 . 本站查看
    5. 王卓,王欢,任鹏刚,王明存. 硅氧烷杂化苯并恶嗪及其耐高温复合材料. 热固性树脂. 2019(02): 13-20 . 百度学术
    6. 杨海荟,崔丽平. 新型含醚酰亚胺端炔硅烷偶联剂的合成研究. 广东化工. 2019(18): 69-71+78 . 百度学术
    7. 宋来福,杨彩云. 复合材料界面理论及石英纤维表面处理与改性方法研究进展. 纺织科学与工程学报. 2018(01): 171-176 . 百度学术
    8. 杨海荟,扈艳红,杜磊,顾渊博,张芳芳. 新型硅烷偶联剂对石英纤维/含硅芳炔复合材料界面增强增韧改性. 玻璃钢/复合材料. 2016(08): 13-21 . 百度学术

    其他类型引用(4)

图(15)  /  表(1)
计量
  • 文章访问数:  1446
  • HTML全文浏览量:  478
  • PDF下载量:  111
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-04-22
  • 录用日期:  2020-08-20
  • 网络出版日期:  2020-08-23
  • 刊出日期:  2021-02-14

目录

    /

    返回文章
    返回