Strength analysis and extrusion process optimization of wood-plastic composite by response surface method
-
摘要: 以杨木纤维(WF)为增强材料,以高密度聚乙烯(HDPE)为基体,马来酸酐接枝聚乙烯(MAPE)为偶联剂,采用熔融挤出法制备了WF/HDPE复合材料。选取WF含量、偶联剂添加量、挤出温度为自变量,试件的抗冲击强度、弯曲强度、拉伸强度为响应值,采用Box-Behnken Design方法设计实验并利用响应曲面法建立WF/HDPE复合材料力学强度的二次多项数学模型,对WF/HDPE复合材料的挤出工艺进行优化设计。结果表明,WF添加量、MAPE添加量和挤出温度的最佳水平为:47.37wt%、4.23wt%、173.69℃,此时WF/HDPE复合材料的抗冲击强度为4.06 kJ·m−2,弯曲强度为43.79 MPa,拉伸强度为28.59 MPa。模型预测值与实测值误差小于5%,较好地反映了WF/HDPE复合材料力学性能与挤出工艺因素间的关系。Abstract: WF/HDPE composites were prepared by melt extrusion with poplar fiber (WF) as reinforcing material, high density polyethylene (HDPE) as matrix and maleic anhydride grafted polyethylene (MAPE) as coupling agent. The addition amount of WF, the addition amount of coupling agent and the extrusion temperature were selected as independent variables, and the impact strength, bending strength and tensile strength of the specimen were selected as the response value. The experiment was designed by Box-Behnken Design method and the secondary mathematical model of mechanical strength of WF/HDPE composites was established by the response surface method to optimize the extrusion process of the composites. The results show that the optimum levels of WF addition, MAPE addition and extrusion temperature are 47.37wt%, 4.23wt% and 173.69℃, respectively. The corresponding impact strength, bending strength and tensile strength of WF/HDPE composite are 4.06 kJ·m−2, 43.79 MPa and 28.59 MPa. The error between the predicted value of the model and the measured value is less than 5%, which well reflects the relationship between the mechanical properties and the factors of extrusion process of the WF/HDPE composites.
-
Keywords:
- wood plastic /
- tensile property /
- bending property /
- impact resistance /
- response surface method
-
-
图 4 WF/HDPE复合材料抗冲击强度实测值与方程预测值对应关系 (a)、残差的正态概率分布曲线 (b)、残差与方程预测值对应关系 (c)
Figure 4. Relationship between measured and predicted values of impact strength of WF/HDPE composites (a) , normal probability distribution curve of residuals (b) , correlation diagram of residual error and equation prediction value (c)
表 1 响应曲面因素水平设计
Table 1 Response surface factor horizontal design
Level Mass fraction of WF/wt% Temperature/
℃Mass fraction of MAPE/wt% −1 40 165 2 0 50 172.5 4 1 60 180 6 Note: MAPE—Maleic anhydride grafted polyethylene. 表 2 各因素设计方案及测试结果
Table 2 Design and test results of each factor
Number Mass fraction
of WF/wt%Temperature/
℃Mass fraction
of MAPE/wt%Mass fraction
of HDPE/wt%Impact strength /
(kJ·m−2)Bending
strength/MPaTensile
strength/MPa1 50 172.5 4 46 3.95(0.20)* 44.13(0.41) 28.63(0.28) 2 50 172.5 4 46 3.64(0.34) 43.12(0.28) 28.32(0.35) 3 60 172.5 2 38 2.89(0.19) 41.26(1.07) 24.83(0.34) 4 60 180 4 36 3.11(0.16) 42.03(0.79) 25.32(0.41) 5 40 165 4 56 4.56(0.10) 38.67(1.39) 26.32(0.77) 6 50 165 2 48 3.36(0.37) 41.75(0.31) 28.13(0.49) 7 40 172.5 6 54 4.33(0.14) 37.97(0.55) 26.59(0.47) 8 50 172.5 4 46 3.87(0.34) 42.98(0.58) 28.42(0.26) 9 50 180 2 48 3.12(0.17) 40.84(0.67) 27.93(0.30) 10 50 180 6 44 3.40(0.28) 42.39(1.34) 28.21(0.32) 11 50 165 6 44 3.21(0.13) 41.77(0.31) 28.3(0.39) 12 40 172.5 2 58 4.22(0.17) 37.42(1.25) 26.51(0.74) 13 60 165 4 36 3.08(0.35) 40.91(0.48) 25.36(0.73) 14 60 172.5 6 34 3.01(0.24) 41.39(0.41) 25.67(0.73) 15 50 172.5 4 46 4.03(0.14) 44.36(0.87) 29.03(0.90) 16 40 180 4 56 4.87(0.36) 38.69(1.29) 26.89(0.47) 17 50 172.5 4 46 3.72(0.24) 43.27(1.14) 28.47(0.62) Note: *—Standard deviation. 表 3 WF/HDPE复合材料抗冲击强度的线性回归分析结果
Table 3 Regression analysis results for impact strength of WF/HDPE composites
Source Sum of square Degree of freedom Mean square F value P value Model 5.44 9 0.6 25.31 0.0002 A-WF 4.34 1 4.34 181.49 < 0.0001 B-Temperature 0.011 1 0.011 0.44 0.5284 C-MAPE 0.016 1 0.016 0.68 0.4374 AB 0.02 1 0.02 0.82 0.3952 AC 0.000025 1 0.000025 0.00105 0.9751 BC 0.046 1 0.046 1.93 0.2069 A2 0.17 1 0.17 7.15 0.0318 B2 0.081 1 0.081 3.38 0.1086 C2 0.78 1 0.78 32.73 0.0007 Residual 0.17 7 0.024 — — Lack of fit 0.064 3 0.021 0.82 0.546 Pure error 0.1 4 0.026 — — Total 5.61 16 R2=0.9702 Radj2=0.9319 Rpre2=0.7893 Notes: F—Variance test; P—Significance test; R2—Coefficient of determination; Radj2—Adjusted determination coefficient; Rpre2—Predictive determination coefficient. 表 4 WF/HDPE复合材料弯曲强度的线性回归分析结果
Table 4 Regression analysis results for bending strength of WF/HDPE composites
Source Sum of square Degree of freedom Mean square F value P value Model 67.45 9 7.49 22.95 0.0002 A-WF 20.61 1 20.61 63.11 < 0.0001 B-Temperature 0.09 1 0.09 0.28 0.6152 C-MAPE 0.63 1 0.63 1.94 0.2065 AB 0.3 1 0.3 0.93 0.3679 AC 0.044 1 0.044 0.14 0.7241 BC 0.59 1 0.59 1.79 0.2225 A2 33.89 1 33.89 103.8 < 0.0001 B2 1.83 1 1.83 5.61 0.0497 C2 6.32 1 6.32 19.34 0.0032 Residual 2.29 7 0.33 — — Lack of fit 0.71 3 0.24 0.6 0.6495 Pure error 1.58 4 0.39 — — Total 69.74 16 R2=0.9726 Radj2=0.9251 Rpre2=0.8023 表 5 WF/HDPE复合材料拉伸强度的线性回归分析结果
Table 5 Regression analysis results for tensile strength of WF/HDPE composites
Source Sum of square Degree of freedom Mean square F value P value Model 29.53 9 3.28 54.38 < 0.0001 A-WF 3.29 1 3.29 54.52 0.0002 B-Temperature 0.0072 1 0.0072 0.12 0.7399 C-MAPE 0.23 1 0.23 3.89 0.0893 AB 0.093 1 0.093 1.54 0.2544 AC 0.14 1 0.14 2.39 0.1658 BC 0.003025 1 0.003025 0.05 0.8292 A2 24.7 1 24.7 409.32 < 0.0001 B2 0.14 1 0.14 2.25 0.1774 C2 0.27 1 0.27 4.43 0.0733 Residual 0.42 7 0.06 — — Lack of fit 0.11 3 0.037 0.48 0.712 Pure error 0.31 4 0.078 — — Total 29.96 16 R2=0.9859 Radj2=0.9678 Rpre2=0.9239 -
[1] 张扬. 竹塑复合材料结构设计及性能研究[D]. 北京: 北京化工大学, 2015. ZHANG Yang. Reasearch on the structure design and properties of bamboo plastic composite[D]. Beijing: Beijing University of Chemical Technology, 2015(in Chinese).
[2] 宋永明, 王清文. 木塑复合材料流变行为研究进展[J]. 林业科学, 2012, 48(8):143-149. SONG Yongming, WANG Qingwen. Research progress on rheological behavior of wood-plastic composites[J]. Scientia Silvae Sinicae,2012,48(8):143-149(in Chinese).
[3] 张泽华, 李雪菲, 张双保. 国内外木塑复合材料的研究进展[J]. 木材加工机械, 2018, 29(6):36-38. ZHANG Zehua, LI Xuefei, ZHANG Shuangbao. Research progress of wood-plastic composite[J]. Wood Processing Machinery,2018,29(6):36-38(in Chinese).
[4] 唐健峰, 路琴, 袁杰, 等. 白炭黑和mPE增韧PP竹塑复合材料的性能及其机理[J]. 材料科学与工程学报, 2019, 37(1):86-90. TANG Jianfeng, LU Qin, YUAN Jie, et al. Study on the properties of PP bamboo plastic composites toughened by white carbon black and mPE[J]. Journal of Materials Science and Engineering,2019,37(1):86-90(in Chinese).
[5] 王清文, 王伟宏. 木塑复合材料与制品[M]. 北京: 化学工业出版社, 2007. WANG Qingwen, WANG Weihong. Wood-plastic compo-sites and products[M]. Beijing: Chemical Industry Press, 2007(in Chinese).
[6] ZHANG Qinghua, TANG Lei, ZHANG Jianhua, et al. Optimization of thermal-dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues[J]. Bioresource Technology,2011,102(4):3958-3965. DOI: 10.1016/j.biortech.2010.12.031
[7] SAEB M. R., MOGHRI M. Application of response surface methodology in describing fusion characteristics of rigid poly (vinyl chloride)/nanoclay/wood flour/calcium carbonate hybrid nanocomposites[J]. Journal of Vinyl & Additive Technology,2015,21(3):183-190.
[8] 张淑洁, 伏立松, 王瑞, 等. 管道修复用涤纶-苎麻非织造物/环氧树脂复合材料厚度设计[J]. 复合材料学报, 2019, 36(12):2805-2814. ZHANG Shujie, FU Lisong, WANG Rui, et al. Thickness design of polyester-ramie/epoxy nonwoven composite applied on pipeline rehabilitation[J]. Acta Materiae Compo-sitae Sinica,2019,36(12):2805-2814(in Chinese).
[9] 王春红, 支中祥, 任子龙, 等. 稻壳纤维粒径和掺量分数对水泥复合材料性能的影响[J]. 复合材料学报, 2018, 35(6):1582-1589. WANG Chunhong, ZHI Zhongxiang, REN Zilong, et al. Effect of rice husk fiber particle size and content on the properties of cement composite[J]. Acta Materiae Compositae Sinica,2018,35(6):1582-1589(in Chinese).
[10] ASTM International. Standard test methed for tensile properties of plastics: ASTM D638—03[S]. West Conshohocken: ASTM International, 2003.
[11] ASTM International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790[S]. West Conshohocken: ASTM International, 2017.
[12] ASTM International. Standard test methods for determining the izod pendulum impact resistance of plastics: ASTM D256[S]. West Conshohocken: ASTM International, 2018.
[13] FANG Hao, ZHAO Chen, SONG Xiangyang. Optimization of enzymatic hydrolysis of steam-exploded corn stover by two approaches: Response surface methodology or using cellulase from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger NL02[J]. Bioresource Technology. 2010, 101(11): 4111-4119.
[14] LI Xin, OUYANG Jia, XU Yong, et al. Optimization of culture conditions for production of yeast biomass using bamboo wastewater by response surface methodology[J]. Bioresource Technology, 2009, 100(14): 3613-3617.
[15] 洪旗, 史耀耀, 路丹妮, 等. 基于灰色关联分析和响应面法的复合材料缠绕成型多目标工艺参数优化[J]. 复合材料学报, 2019, 36(12):2822-2832. HONG Qi, SHI Yaoyao, LU Danni, et al. Multi-response parameter optimization for the composite tape winding process based on grey relationa[J]. Acta Materiae Compo-sitae Sinica,2019,36(12):2822-2832(in Chinese).
[16] 解光强, 陈啟原, 林文树. 基于响应曲面法的木塑复合3D打印线材挤出参数优化[J]. 塑料科技, 2018, 46(4):103-108. XIE Guangqiang, CHEN Qiyuan, LIN Wenshu. Optimization of extrusion parameters of wood-plastic composite 3D printing[J]. China Plastics Industry,2018,46(4):103-108(in Chinese).
[17] 何为, 唐斌, 薛卫东. 优化实验设计方法及数据分析[M]. 北京: 化学工业出版社, 2012. HE Wei, TANG Bin, XUE Weidong. Optimization of experimental design method and data analysis[M]. Beijing: Chemical Industry Press, 2012(in Chinese).
[18] 宋丽贤, 张平, 姚妮娜, 等. 木粉粒径和填量对木塑复合材料力学性能影响研究[J]. 功能材料, 2013, 44(17):2451-2454. DOI: 10.3969/j.issn.1001-9731.2013.17.003 SONG Lixian, ZHANG Ping, YAN Nina, et al. Study on effect of particle diameter and filling quantity of wood flour on mechanical properties of wood-plastics composite[J]. Journal of Functional Materials,2013,44(17):2451-2454(in Chinese). DOI: 10.3969/j.issn.1001-9731.2013.17.003
[19] 冯莉, 颜军. 木粉含量对木塑复合材料可靠性的影响[J]. 林业科技, 2012, 37(6):44-45. DOI: 10.3969/j.issn.1001-9499.2012.06.016 FENG Li, YAN Jun. The reliability influence of wood powder content on wood-plastic composite material[J]. Forestry Science Technology,2012,37(6):44-45(in Chinese). DOI: 10.3969/j.issn.1001-9499.2012.06.016
[20] 康浩, 郝妙琴. 不同变量因子对木塑复合材料的力学性能研究[J]. 橡塑技术与装备, 2018, 44(14):49-54. KANG Hao, HAO Miaoqin. Study on mechanical properties of wood plastic composites with different variables[J]. China Rubber/Plastics Technology and Equipment,2018,44(14):49-54(in Chinese).
[21] 张泽志, 韩春亮, 李成未. 响应面法在试验设计与优化中的应用[J]. 河南教育学院学报(自然科学版), 2011, 20(4):34-37. ZHANG Zezhi, HAN Chunliang, LI Chengwei. Application of response surface method in experimental design and optimization[J]. Journal of Henan Institute of Education,2011,20(4):34-37(in Chinese).
[22] 戚朝阳, 王雅琪, 郭浩然, 等. 响应面法在化工生产工艺优化中的应用[J]. 辽宁化工, 2017, 46(10):1013-1014. DOI: 10.3969/j.issn.1004-0935.2017.10.029 QI Chaoyang, WANG Yaqi, GUO Haoran, et al. Application of response surface method in optimization of chemical production processes[J]. Liaoning Chemical Industry,2017,46(10):1013-1014(in Chinese). DOI: 10.3969/j.issn.1004-0935.2017.10.029
[23] 周鑫, 孙海龙, 张泽乾. 响应面法在污水处理工艺优化中的应用[J]. 化学研究与应用, 2017, 29(6):753-760. DOI: 10.3969/j.issn.1004-1656.2017.06.001 ZHOU Xin, SUN Hailong, ZHANG Zeqian. Application of process optimization of wastewater treatment using response surface methodology[J]. Chemical Research and Application,2017,29(6):753-760(in Chinese). DOI: 10.3969/j.issn.1004-1656.2017.06.001
-
期刊类型引用(8)
1. 吕艾娟,孙俊涛,胡青青,米欣,肖强. EDOT-含氟聚合物涂层的制备及其防腐蚀性能. 浙江师范大学学报(自然科学版). 2023(04): 408-415 . 百度学术
2. 刘创华,胡青青,梁晓蕾,米欣,周强,朱伟东,肖强. 石墨烯/含氟聚丙烯酸酯复合材料涂层的制备及其防腐蚀性能. 浙江师范大学学报(自然科学版). 2021(03): 278-285 . 百度学术
3. 梁晓蕾,刘创华,米欣,朱伟东,周强,肖强. SiO_2或TiO_2纳米粒子/含氟聚丙烯酸酯复合涂层的制备及其防腐蚀性能. 复合材料学报. 2020(08): 1832-1840 . 本站查看
4. 王霞,侯丽,张代雄,周雯洁,古月. 聚苯胺在防腐方面的研究及应用现状. 表面技术. 2019(01): 208-215 . 百度学术
5. 郝建军,李文若,林雪. (H_4N)_2S对电合成CoO/聚苯胺复合膜腐蚀性能的影响. 复合材料学报. 2019(07): 1618-1624 . 本站查看
6. 李庆鲁,安成强,郝建军. 改性水性丙烯酸防腐涂料的研究进展. 电镀与涂饰. 2019(11): 555-560 . 百度学术
7. 高晓辉,李玉峰,李继玉,祝晶晶. 磷化聚苯胺用量对复合涂层防腐蚀性能的影响. 精细化工. 2018(06): 934-940+948 . 百度学术
8. 胡传波,厉英,孔亚州,丁玉石. 聚邻氯苯胺-纳米SiC/环氧树脂复合材料的制备与防腐性能. 复合材料学报. 2017(06): 1167-1176 . 本站查看
其他类型引用(8)
-