Abstract:
In order to study the bending performance of engineered cementitious composites (ECC) reinforced by high-strength stainless steel wire strand meshes, the four-point bending tests were carried out on 8 high-strength stainless steel wire strands mesh reinforced ECC thin plate specimens designed in two groups, which considered two factors including the reinforcement ratio of longitudinal high-strength stainless steel wire strands and ECC compressive and tensile strength. The results show that with an increase in the reinforcement ratio of longitudinal high-strength stainless steel wire strands, the cracking load is basically unchanged, but the peak load increases significantly, and the peak displacement decreases, that is the ductility is reduced. In addition, the reasonable reinforcement ratio of longitudinal high-strength stainless steel wire strands should be less than 0.48%. The cracking load and peak load of the high-strength stainless steel wire strand mesh reinforced ECC bending specimen increases as the ECC strength increasing. After ECC cracking, the steel wire strands and the ECC in the tensile zone are tensioned together. When the applied load reaches 80% of the peak load, the maximum crack width at the bottom is only 0.08 mm. At peak load, the maximum crack width doesn’t exceed 0.55 mm, and the compressive strain of the ECC in the compression zone reaches 0.01. When the ECC is crushed, the maximum deflection in the mid-span reaches 1/15 of the span. These phenomena show that the high-strength stainless steel wire strand mesh reinforced ECC studied in the paper has good crack resistance and ductility.