三维机织复合材料残余应力/应变多尺度分析及工艺参数优化

Multiscale analysis and process parameters optimization of residual stress/strain of 3D woven composite

  • 摘要: 为预测三维机织复合材料工艺引入的残余应力/应变,提出工艺制度优化方案,建立了一种工艺过程分析的多尺度模型。通过建立纤维尺度及纱线尺度代表体元(RVE),计算了成型过程中纤维纱线及三维机织复合材料的模量演化历程。考虑固化过程中树脂的化学收缩效应,在纱线尺度上开展热-化学-力学耦合分析,预测了细观残余应力-应变及其演化规律。采用三维机织技术,实现了光纤布拉格光栅传感器(FBG)在三维机织预制体中的预埋,并对其树脂传递模塑(RTM)成型过程中的温度、应变历程进行监测,试验结果验证了有限元模型的准确性。采用基于空间信息、误差信息和优化结果的三种序列采样方法,建立了工艺过程分析代理模型,并开展工艺参数优化设计,结果显示采用优化后的工艺参数,残余应变降低了15.4%,工艺周期缩短了10.6%。

     

    Abstract: To predict the process-induced residual stress/strain of 3D woven composite and propose the optimal cure cycle, a multiscale model of the process analysis has been developed. Based on the representative volume elements (RVE) at the fiber and yarn scale, the modulus development of yarns and 3D woven composite was obtained. A thermal-chemical-mechanical coupling analysis was conducted on the yarn scale with the consideration of chemical shrinkage effect of resin, and the evolution of the microscopic stress-strain was calculated. The fiber Bragg grating (FBG) sensors were embedded in the 3D woven preform through the 3D weaving technique, and the evolutions of temperature and strain were monitored. The accuracy of the finite element model was validated by the experimental result. Three sequential sampling methods based on space, error and result were adopted to establish the surrogate model of the process analysis of 3D woven composite. Based on the surrogate model, the optimization of process parameters of 3D woven composite forming process was carried out. The results show that the residual strain is reduced by 15.4% and the cure cycle is shortened by 10.6%.

     

/

返回文章
返回