纳米核壳型Ag@Fe3O4复合材料的制备、催化及抑菌性能

Preparation, catalytic property and antibacterial property of Ag@Fe3O4 core-shell composite nanomaterials

  • 摘要: 采用“一锅法”制备纳米核-壳结构的Ag@Fe3O4复合材料。利用TEM、XRD、UV-vis DRS、振动探针式磁强计(VSM)对Ag@Fe3O4复合材料进行表征。以甲基橙为目标污染物,研究Ag@Fe3O4复合材料在过量NaBH4介质中加氢还原的催化活性,并探讨其催化机制;以单质Ag和Fe3O4作参比,研究Ag@Fe3O4复合材料对金黄色葡萄球菌和大肠杆菌的抑菌性能。结果表明,在10 min内,Ag@Fe3O4复合材料对甲基橙的加氢还原催化率为98%以上,且活性Ag转移电子至甲基橙的N=N键,使其断裂还原成对氨基苯磺酸钠和对二氨基苯;抑菌实验表明,Ag@Fe3O4复合材料比单质Ag具有更强的抑菌活性,并对细胞壁中含有更薄的磷脂双分子层的大肠杆菌更为敏感。

     

    Abstract: The Ag@Fe3O4 composites with nano core-shell structure were successfully prepared by a one-pot method. The resulting Ag@Fe3O4 composites were characterized by TEM, XRD, UV-vis DRS and vibrating sample magnetometry (VSM). The catalytic performance and mechanism of Ag@Fe3O4 composites were investigated by photometrically monitoring the reduction of methyl orange in the presence of excess of NaBH4. Furthermore, the antibacterial of Ag@Fe3O4 composites against Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli) was studied by the paper diffusion experiment using Ag and Fe3O4 as the references. The results indicate that over 98% of methyl orange is catalytically degraded within 10 min. This superior catalytic activity may be resulted from transferring electron to N=N bond by Ag, thereby causing N=N fracture and generating sodium 4-aminobenzenesulfonate and p-diaminobenzene. Antibacterial experiment shows that Ag@Fe3O4 composites more excellent bacteriostatic activity than Ag and is more sensitive to E.coli than to S.aureus. The main reason can be ascribed to the fact that phospholipid bilayer in cell wall of E.coli is thinner than that of S.aureus.

     

/

返回文章
返回