马来酸酐接枝氧化石墨烯并改性双马树脂复合材料的微观结构及力学性能

Microstructure and mechanical properties of bismaleimide composite modified by graphene oxide grafting with maleic anhydride

  • 摘要: 采用改进的Hummers法制备了氧化石墨烯(GO),并用马来酸酐(MAH)接枝改性制得MAH接枝氧化石墨烯(MAH-GO)。以二烯丙基双酚A (BBA)和双酚A双烯丙基醚(BBE)为活性稀释剂,4,4’-二氨基二苯甲烷型双马来酰亚胺(MBMI)为反应单体合成MBMI-BBA-BBE (MBAE)树脂基体;并以MAH-GO为增强体通过原位聚合制得MAH-GO/MBAE复合材料,表征MAH-GO的微观结构及其对复合材料力学性能的影响。结果表明:MAH成功接枝在GO表面,片层结构清晰,且表面出现褶皱,采用化学滴定法测定接枝率约为11.32%。MAH-GO/MBAE复合材料的微观形貌结果表明,当适量的MAH-GO加入体系中后,MAH-GO/MBAE复合材料断裂纹呈“树枝状”无规则发散,为典型的韧性断裂。当MAH-GO添加量为0.5wt%时,MAH-GO在基体中分散均匀,MAH-GO/MBAE复合材料的冲击强度和弯曲强度分别为15.88 kJ/m2和142.13 MPa,比基体树脂分别提高了67.68%和43.61%,力学性能得到明显改善。

     

    Abstract: Graphene oxide (GO) was prepared by improved Hummers method and to obtain maleic anhydride (MAH)-GO by graft modification with MAH. 4,4’-diamino diphenyl methane bismaleimide (MBMI) resin as the reactive monomer, diallyl bisphenol A (BBA) and bisphenol A bisallyl ether (BBE) as reactive diluents, MBMI-BBA-BBE (MBAE) resin matrix was synthesized. The MAH-GO/MBAE composites were prepared by in-situ polymerization, the microstructure of MAH-GO was characterized and the effect of the reinforcement on mechanical properties of the MAH-GO/MBAE composites was studied. The results show that MAH is successfully grafted on the surface of GO, with clear lamellar structure and folds on the surface, and the graft rate is determined by chemical titration to be about 11.32%. The micromorphology of MAH-GO/MBAE composites shows that the fracture cracks are irregularly divergent and are typical ductile fracture, when MAH-GO is an appropriate amount and uniformly dispersed in the matrix resin. The impact strength and the bending strength of the MAH-GO/MBAE composite are 15.88 kJ/m2 and 142.13 MPa, which are 67.68% and 43.61% higher than that of the matrix resin, respectively, when the content of MAH-GO is 0.5wt%. The mechanical properties have been improved obviously.

     

/

返回文章
返回