Abstract:
Shear strength and toughness are important indices for evaluating load-resisting capacity and energy absorption of members under complex loading conditions. In order to study the shear-resisting capacity of high-strength steel fiber(SF)-rubber/concrete, 14 sets of SF-rubber/concrete specimens were designed for double-shear experiments, in which influence of parameters including SF volume fraction, rubber volume substation and water to binder ratio on the shear-resisting behavior and failure modes of SF-rubber/concrete were investigated. Research results show that the bridging action of SF and its positive synergy with rubber particles in SF-rubber/concrete can significantly improve the shear-resisting behavior of concrete. SF play a dominant role in shear-resisting behavior of SF-rubber/concrete specimens. The shear strength, deformation at peak load and shear toughness of SF-rubber/concrete specimens are significantly higher than the plain concrete and rubberized concrete specimens, which increase with the SF volume fraction, and the shear failure mode of SF-rubber/concrete is obviously ductile. When the SF volume fraction is 1.5vol% and the rubber content (volume substitution of sand) is 10%, the shear strength and deformation at peak load of SF-rubber/concrete specimens are 78% and 63% respectively, higher than those of the rubber concrete. Rubber particles also help to improve the shear-resisting behavior of SF-rubber/concrete. The shear toughness and ductility of SF-rubber/concrete are further increased compared with SF reinforced concrete. With the increase of rubber content, the shear strength, peak deformation and pre-peak shear toughness of SF-rubber/concrete can be unchanged after using the optimized water-binder ratio, while the post-peak toughness index can be further increased by 96%. Based on the test results, shear strength formula of SF-rubber/concrete was established considering the influence of SF volume fraction and rubber substitution.