不同边界条件下波纹夹芯板的自由振动特性

Free vibration characteristics of corrugated sandwich plates under different boundary conditions

  • 摘要: 波纹夹芯板作为一种特殊的复合材料结构,边界条件对其振动特性有重要影响。根据不同剪切方式下的剪切变形理论和基尔霍夫经典板理论(CLPT),利用Hamilton原理建立波纹夹芯板的动力学方程。其中,波纹芯层等效成各向异性均质体。根据四边简支、四边固支、对边简支和固支、一边固支三边简支的边界条件,推导出位移形式的偏微分动力学方程。求解得到波纹夹芯板在不同边界条件下自由振动的固有频率,与有限元仿真结果进行对比,验证了理论结果的正确性。在此基础上,基于指数剪切变形理论(ESDT),分析了不同边界条件下波纹夹芯板的基频随材料参数和结构几何参数的变化规律。结果表明,材料和几何参数对不同边界条件下波纹夹芯板的振动特性有重要影响。相关研究结果将对波纹夹芯板在工程应用中的减振设计及优化分析提供一定的理论依据。

     

    Abstract: As a special composite structure, the vibration characteristics of corrugated sandwich panel are greatly influenced by the boundary conditions. According to the shear deformation theory of different shear modes and Kirchhoff's classical plate theory(CLPT), the dynamic equation of corrugated sandwich plates was established by Hamilton principle. Among them, the corrugated core layer was equivalent to an anisotropic homogeneous body. According to the boundary conditions of four sides simply supported, four sides clamped, opposite sides simply supported and clamped, one side fixed and three edges clamped, the partial differential dynamic equation relative to the displacements was derived. By solving the equation, the natural frequencies of the corrugated sandwich plates under different boundary conditions were obtained. Compared with the finite element simulation results, the correctness of the theoretical results was verified. On this basis, based on the exponential shear deformation theory(ESDT), the variation of fundamental frequency of the corrugated sandwich plate with material parameters and structural geometric parameters under different boundary conditions was analyzed. The results show that the material and structural geometric parameters have an important influence on the vibration characteristics of the corrugated sandwich plates under different boundary conditions. Relevant research results will provide a theoretical basis for the vibration reduction design and optimization analysis of corrugated sandwich plates in engineering application.

     

/

返回文章
返回