Effect of multi-pass friction stir processing on microstructure and mechanical properties of SiCP/2A14 aluminum alloy composites
-
摘要: 采用搅拌摩擦加工(FSP)技术对SiC颗粒增强2A14铝合金(SiCP/2A14)复合材料进行处理,通过金相表征、电子背散射衍射(EBSD)、SEM、硬度测试及力学拉伸实验等分析了多道次搅拌摩擦加工对SiCP/2A14复合材料微观组织、力学性能及超塑性变形行为的影响。研究表明:经搅拌摩擦加工后,SiCP/2A14复合材料搅拌区内SiC颗粒分布明显均匀,晶粒细化,其中2道次搅拌摩擦加工的SiCP/2A14复合材料的晶粒尺寸最小,为3.14 μm。随着搅拌加工道次的增加,SiCP/2A14复合材料的硬度降低,室温抗拉强度和高温延伸率均先提高后降低,其中2道次搅拌摩擦加工的SiCP/2A14复合材料的室温抗拉强度为319 MPa,相较于未经FSP处理的SiCP/2A14复合材料提高了41%,在500℃、应变速率为1.0×10−3 s−1条件下高温延伸率为609%,相较于未经FSP处理的SiCP/2A14复合材料提高了133%。
-
关键词:
- 搅拌摩擦加工(FSP) /
- 铝基复合材料 /
- 微观组织 /
- 力学性能 /
- 超塑性
Abstract: The SiC particle reinforced 2A14 aluminum alloy (SiCP/2A14) composite was treated by friction stir processing (FSP) technology. The metallurgical characterization, electron backscatter diffraction (EBSD), SEM, hardness test and mechanical tensile test were used to analyze the influence of the multi-pass FSP on the microstructure, mechanical properties and superplastic deformation behavior of the SiCP/2A14 composite. The results show that the distribution of SiC particles in the SiCP/2A14 composite stirring zone is obviously uniform and the grain is refined after FSP. The grain size of the SiCP/2A14 composite with 2-pass of FSP is the smallest, which is 3.14 μm. With the increase of processing passes, the hardness of the SiCP/2A14 composite decreases, and the tensile strength at room temperature and the elongation at high temperature both increase first and then decrease. Among them, the SiCP/2A14 composite with 2-pass FSP reaches the peak, and the tensile strength at room temperature is 319 MPa, which is 41% higher than the SiCP/2A14 composite without FSP, and the elongation is 609% at 500℃ and the strain rate is 1×10−3 s−1, which is 133% higher than the SiCP/2A14 composite without FSP. -
纤维增强复合材料具有比强度高、比模量大等优点,已被广泛应用于航空航天等工业领域[1]。但复合材料对冲击敏感性较高,内部受低速冲击后会产生不可见损伤,造成安全隐患。碳纤维-玻璃纤维混杂复合材料是将碳纤维及玻璃纤维在同一种基体内成型的复合材料,可有效提高复合材料的力学性能[2-3]。目前对混杂复合材料低速冲击性能的研究主要集中在混杂结构和纤维种类上[4-5]。Swolfs等[6]研究发现,将低伸长率纤维放在层合板中间位置,可有效提高抗侵彻性能。Hung等[7]分析了碳纤维-玻璃纤维层间混杂复合材料低速冲击性能,发现将碳纤维置于冲击面时抗冲击性能更强。Manikandan等[8]研究发现,将韧性纤维置于复合材料背面可吸收更多冲击能量,原因是由于下部韧性层可为上部脆性层提供更大的变形。Sarasini等[9]对玻璃纤维-玄武岩纤维混杂复合材料进行低速冲击研究表明,玄武岩纤维为芯层的夹芯混杂结构吸收冲击能量更多,玻璃纤维为芯层时弯曲性能较好。有限元分析是分析低速冲击的有效手段,Liu等[10]对比了Puck、Hashin及Chang-Chang失效准则对低速冲击预测的区别,结果表明,三种准则在低速冲击响应和能量耗散方面的预测结果基本一致,在基体和分层损伤的预测上有所不同。Hou等[11]基于连续介质损伤力学(CDM)建立了含修补区域的复合材料低速冲击模型,采用基于断裂韧性的损伤变量,研究了修补区厚度及铺层结构对低速冲击性能的影响。Ebina等[12]对不同铺层结构的碳纤维复合材料进行低速冲击模拟,面内损伤采用增强连续介质力学(ECDM)模型,纤维损伤采用裂缝模型(SCM),层间采用界面单元(CZM),模拟结果与实验数据拟合度较高。Chen等[13]建立了碳纤维-玻璃纤维-玄武岩纤维复合材料低速冲击损伤模型,定义指数型损伤变量,研究发现,碳纤维为芯层的夹芯结构抗冲击性能较好,玄武岩-碳纤维混杂结构与碳纤维-玻璃纤维混杂结构的冲击响应类似。Wu等[14]建立了纱线尺度的三维正交碳纤维-玻璃纤维混杂复合材料低速冲击模型,采用代表性体积单元(RUC)计算复合材料层合板宏观力学参数,研究发现,冲击面为碳纤维时抗冲击性能更好,破坏主要为冲击面碳纤维断裂和上层纤维-基体分层损伤,冲击面为玻璃纤维时破坏主要为复合材料层合板背部分层损伤。由于冲击速度较低,应变率效应不明显,大多数复合材料低速冲击研究会忽略应变率效应[15-16]。部分低速冲击数值模拟研究考虑了应变率效应,Wang等[17]建立了应变率相关的碳纤维复合材料低速冲击三维损伤模型,采用修正的复合材料应力-应变关系及考虑应变率效应的层内层间损伤模型,模拟结果与实验数据拟合程度较好。
本文以碳纤维-玻璃纤维混杂复合材料为研究对象,分析混杂结构和冲击面纤维种类对低速冲击性能的影响。采用商业有限元软件ABAQUS建立了层间和层内两类混杂复合材料低速冲击模型,层内混杂复合材料采用纱线尺度模型。编写VUMAT子程序定义指数型渐进损伤因子及刚度退化方案,考虑纤维断裂、基体开裂、分层等损伤,通过分析实验数据及损伤形貌,揭示了碳纤维-玻璃纤维混杂复合材料低速冲击损伤破坏机制。
1. 实验及仿真方法
1.1 原材料及试样制备
单向经编织物(NCF)采用碳纤维(CF,TORAY T620SC-24K-50C)和玻璃纤维(GF,CPIC ECT469L-2400)制成,包括纯CF和纯GF的NCF织物及两种层内混杂织物,织物规格如表1所示,其中CF-GF和CF-CF-GF-GF为层内混杂织物,织物结构示意图如图1所示。环氧树脂,型号为2511-1A/BS风电叶片真空灌注专用树脂,主剂与固化剂质量比为100∶30,上纬(天津)公司。
表 1 碳纤维-玻璃纤维(CF-GF)单向经编织物(NCF)规格Table 1. Specifications of carbon fiber-glass fiber (CF-GF) non-crimp fabric (NCF)Fabric type Areal density/(g·m−2) Mass ratio of CF to GF CF GF CF 728.3 0 1∶0 GF 0 944.9 0∶1 CF-GF 364.2 472.4 1∶1 CF-CF-GF-GF 364.2 472.4 1∶1 本文设计层间和层内两类混杂结构,层内混杂层合板由CF-GF和CF-CF-GF-GF两种层内混杂织物铺层而成。各层合板的CF-GF混杂比均为1∶1,铺层方式为(0°/90°)4S,共8层,根据混杂结构及冲击面纤维种类进行命名,如表2所示,其中S-C和S-G采用夹芯式层间铺层形式。采用真空辅助树脂传递模塑(VARTM)工艺成型,固化条件为80℃、8 h。
表 2 CF-GF混杂复合材料层合板铺层结构Table 2. Stacking configurations of CF-GF hybrid composite laminatesHybrid structure Stacking sequence Nomenclature Non-hybrid (CFCFCFCF)2s C (GFGFGFGF)2s G Interply-hybrid (CFGFCFGF)2s I-C (GFCFGFCF)2s I-G Sandwich-hybrid (CFCFGFGF)2s S-C (GFGFCFCF)2s S-G Intralayer-hybrid (CF-GF) fabric CN-1 (CF-CF-GF-GF) fabric CN-2 1.2 性能测试
按照ASTM D7136M—05[18],采用INSTRON-9250HV落锤试验机进行低速冲击实验,通过改变冲击速度控制冲击能量,设置两个冲击能量分别为30 J和50 J,试样尺寸为100 mm×150 mm×6 mm,每组测试5个试样。利用NAUT21空气耦合式超声波C扫监测复合材料冲击后分层损伤,采用Bruker SkyScan1072进行Micro-CT测试,观察内部损伤形貌。
1.3 有限元模型
1.3.1 复合材料损伤准则
Hashin失效准则被广泛应用于分析预测复合材料损伤破坏[19],但复合材料在损伤过程中冲击点附近的应力变化剧烈,应力形式的Hashin失效准则无法准确描述材料破坏过程,而应变在冲击过程中的变化较为平缓,更适合作为复合材料的失效判据。因此,本文采用基于应变形式的Hashin失效准则[20],具体表达式如下:
纤维拉伸断裂 (
ε11⩾ ):{e}_{\rm{f}}^{\rm{t}}={\left(\frac{{\varepsilon }_{11}}{{\varepsilon }_{11}^{\rm{T}}}\right)}^{2}+{\left(\frac{{\varepsilon }_{12}}{{\tau }_{12}}\right)}^{2}+{\left(\frac{{\varepsilon }_{13}}{{\tau }_{13}}\right)}^{2}\geqslant 1 (1) 纤维压缩断裂 (
{\varepsilon }_{11}\leqslant 0 ):{e}_{\rm{f}}^{\rm{c}}={\left(\frac{{\varepsilon }_{11}}{{\varepsilon }_{11}^{\rm{C}}}\right)}^{2}\geqslant 1 (2) 基体拉伸断裂(
{\varepsilon }_{22}\geqslant 0 ):{e}_{\rm{m}}^{\rm{t}}={\left(\frac{{\varepsilon }_{22}}{{\varepsilon }_{22}^{\rm{T}}}\right)}^{2}+{\left(\frac{{\varepsilon }_{12}}{{\tau }_{12}}\right)}^{2}+{\left(\frac{{\varepsilon }_{23}}{{\tau }_{23}}\right)}^{2}\geqslant 1 (3) 基体压缩断裂(
{\varepsilon }_{22}\leqslant 0 ):\begin{split} e_{\rm{m}}^{\rm{c}} = &{\left( {\frac{{{E_{22}}{\varepsilon _{22}}}}{{2{G_{12}}{\gamma _{12}}}}} \right)^2} + {\left( {\frac{{{\varepsilon _{22}}}}{{\varepsilon _{22}^{\rm{T}}}}} \right)^2}\left[ {\left( {{{\left( {\frac{{{E_{22}}\varepsilon _{22}^{\rm{C}}}}{{2{G_{12}}{\tau _{12}}}}} \right)}^2} - 1} \right)} \right] + \\& {\left( {\frac{{{\varepsilon _{12}}}}{{{\tau _{12}}}}} \right)^2} + {\left( {\frac{{{\varepsilon _{13}}}}{{{\tau _{13}}}}} \right)^2} \geqslant 1 \end{split} (4) 式中:E和G分别为材料的杨氏模量和剪切模量;
{\varepsilon }_{11} 和{\varepsilon }_{22} 为单元材料主方向的应变分量;{\varepsilon }_{12} 、{\varepsilon }_{13} 和{\varepsilon }_{23} 为单元材料主方向的剪切应变分量;{\varepsilon }_{{{i}}{{i}}}^{\rm{T}} 和{\varepsilon }_{{{i}}{{i}}}^{\rm{C}} 分别为i 方向对应的拉伸和压缩强度的失效应变;{\tau }_{{{i}}{{j}}} 为单元剪切强度对应的剪切失效应变。当某单元内应变分量满足上述某一条件时,即认为该单元发生损伤。失效应变与材料强度之间的关系如下:\begin{split} &{X_{\rm{T}}} = {E_{11}}\varepsilon _{11}^{\rm{T}},{X_{\rm{C}}} = {E_{11}}\varepsilon _{11}^{\rm{C}},{Y_{\rm{T}}} = {E_{22}}\varepsilon _{22}^{\rm{T}},\\ &{Y_{\rm{C}}} = {E_{22}}\varepsilon _{22}^{\rm{C}},{Z_{\rm{T}}} = {E_{33}}\varepsilon _{33}^{\rm{T}},{S_{12}} = {G_{12}}{\tau _{12}},\\ &{S_{13}} = {G_{13}}{\tau _{13}},{S_{23}} = {G_{23}}{\tau _{23}} \end{split} (5) 式中,
{X}_{\rm{T}} 、X_{\rm{C}} 、Y_{\rm{T}} 、Y_{\rm{C}} 、{S}_{{{i}}{{j}}} 分别为层合板轴向拉伸、轴向压缩、横向拉伸、横向压缩和各方向的剪切强度。相关材料属性如表3和表4所示。表 3 用于数值模拟的CF/2511-1A/BS环氧树脂复合材料和GF/2511-1A/BS环氧树脂复合材料弹性参数Table 3. Elastic parameters of CF/2511-1A/BS epoxy composites and GF/2511-1A/BS epoxy composites used in numerical simulationMaterial E11/GPa E22=E33/GPa G12=G13/GPa G23/GPa {\mu }_{12} {\mu }_{13} {\mu }_{23} {G}_{{\rm{f}}}/(kJ·m−2) {G}_{{\rm{m}}}/(kJ·m−2) CF/epoxy 110 8.3 4.6 3.4 0.303 0.303 0.38 80 1 GF/epoxy 40 8.4 4.3 3.2 0.315 0.315 0.39 65 1 Notes: E11, E22, E33—Elastic modulus (direction 11, 22, 33); G12, G13, G23—Shear modulus (direction 12, 13, 23); {\mu }_{12} , {\mu }_{13} , {\mu }_{23} —Poisson’s ratio (direction 12, 13 and 23). 表 4 用于数值模拟的CF/2511-1A/BS环氧树脂复合材料和GF/2511-1A/BS环氧树脂复合材料的强度参数Table 4. Strength parameters of CF/2511-1A/BS epoxy composites and GF/2511-1A/BS epoxy composites used in numerical simulationMPa Material XT XC YT=ZT YC=ZC S12=S13 S23 CF/epoxy 1600 640 48 150 80 60 GF/epoxy 860 550 48 140 65 60 单元产生损伤后需进行材料性能退化,即刚度折减,本文引入指数形式的损伤状态变量d定义渐进损伤刚度折减方案。相比于参数型损伤变量将材料宏观属性直接折减,指数型损伤变量更接近实际情况且损伤过程连续[21]。将Hashin准则中的失效因子(
{e}_{\rm{f}} 、{e}_{\rm{m}} )与损伤变量({d}_{\rm{f}} 、{d}_{\rm{m}} )相关联,具体形式如下:[22],\begin{array}{l} {d_{\rm{f}}} = 1 - \dfrac{1}{{\sqrt {{e_{\rm{f}}}} }}{{\rm{e}}^{\left( { - {E_{11}}{{\left( {\varepsilon _{11}^{{{{\rm{f}}i}}}} \right)}^2}\left( {\sqrt {{e_{\rm{f}}}} - 1} \right){L^{\rm{c}}}/{G_{\rm{f}}}} \right)}}\\ {d_{\rm{m}}} = 1 - \dfrac{1}{{\sqrt {{e_{\rm{m}}}} }}{{\rm{e}}^{\left( { - {E_{22}}{{\left( {\varepsilon _{22}^{{{{\rm{m}}i}}}} \right)}^2}\left( {\sqrt {{e_{\rm{m}}}} - 1} \right){L^{\rm{c}}}/{G_{\rm{f}}}} \right)}} \end{array} (6) 式中:
{G}_{\rm{f}} 和{G}_{\rm{m}} 分别为材料纤维纵向和横向断裂韧性;{L}^{\rm{c}} 为单元特征长度,加入{L}^{\rm{c}} 可降低网格密度对结果精度的影响;i 根据单元受拉或受压分别赋值为T 或C 。本文采用的刚度退化方案如下:\begin{split} &{C}_{11}^{{\rm{d}}}=\left(1-{d}_{\rm{f}}\right){C}_{11} \\ &{C}_{22}^{{\rm{d}}}=\left(1-{d}_{\rm{f}}\right){\left(1-{d}_{\rm{m}}\right)C}_{22} \\ &{C}_{33}^{{\rm{d}}}=\left(1-{d}_{\rm{f}}\right){\left(1-{d}_{\rm{m}}\right)C}_{33} \\ &{C}_{12}^{{\rm{d}}}=\left(1-{d}_{\rm{f}}\right){\left(1-{d}_{\rm{m}}\right)C}_{12} \\ &{C}_{23}^{{\rm{d}}}=\left(1-{d}_{\rm{f}}\right){\left(1-{d}_{\rm{m}}\right)C}_{23} \\ &{C}_{13}^{{\rm{d}}}=\left(1-{d}_{\rm{f}}\right){\left(1-{d}_{\rm{m}}\right)C}_{13} \end{split} (7) 采用双线性内聚力单元(Cohesive element)模拟相邻子层界面的分层损伤[23]。采用二次应力损伤准则(Quads)定义损伤起始,损伤演化采用B-K (Benzeggaph-Kenane)准则,分别如下:
{\left(\frac{{t}_{{\rm{n}}}}{N}\right)}^{2}+{\left(\frac{{t}_{{\rm{s}}}}{S}\right)}^{2}+{\left(\frac{{t}_{\rm{t}}}{T}\right)}^{2}=1 (8) {G}^{\rm{C}}\geqslant {G}_{{\rm{n}}}^{\rm{C}}+\left({G}_{{\rm{S}}}^{\rm{C}}-{G}_{{\rm{n}}}^{\rm{C}}\right){\left(\frac{{G}_{{\rm{s}}}}{{G}_{\rm{T}}}\right)}^{\eta } (9) 式中:
{t}_{{\rm{n}}} 、{t}_{{\rm{s}}} 、{t}_{\rm{t}} 分别为界面法向应力和两个剪切应力;N、S、T对应界面法向和两个剪切强度;{G}_{{\rm{n}}}^{\rm{C}} 和{G}_{{\rm{S}}}^{\rm{C}} 分别为法向和切向临界应变能释放率;{G}_{{\rm{s}}} 和{G}_{{\rm{n}}} 分别为{t}_{{\rm{s}}} 、{t}_{{\rm{n}}} 对应的能量释放率。相关材料属性如表5所示。表 5 CF/2511-1A/BS环氧树脂复合材料和GF/2511-1A/BS环氧树脂复合材料的层间界面参数Table 5. Material properties of interface cohesive elements for CF/2511-1A/BS epoxy composites and GF/2511-1A/BS epoxy compositesρ/(kg·m−3) kN/(GPa·mm−1) kS=kT/(GPa·mm−1) N/MPa S=T/MPa G_{\rm{n}}^{\rm{C}}/(J·m−2) G_{\rm{S}}^{\rm{C}}/(J·m−2) η 1200 15 1.2 30 60 0.28 0.8 1.5 1.3.2 层间/层内数值模拟模型
图2为层间及夹芯混杂复合材料低速冲击模型,层合板采用沙漏增强模式的减缩积分单元C3D8R,共8层,单层尺寸为150 mm×100 mm×0.75 mm,定义X轴为纤维方向,Y轴为基体方向,通过改变每层材料属性实现相应的混杂结构。界面为0厚度的COH3D8内聚力单元,共7层。夹具是内径为120 mm、宽为10 mm的圆环,冲头是直径为12.6 mm的半球形锤头,夹具和冲头定义为刚体,采用R3D4单元。细化层合板冲击区域网格,提高模拟精准度。
层内混杂复合材料采用纱线尺度模型,层合板、夹具和冲头尺寸与层间模型一致,如图3(a)所示。模型假设树脂对纤维完全浸润,复合材料中纱线系统以纤维束增强树脂的复合形式存在,纤维与树脂为一整体[24],单根纱线横截面尺寸为5 mm×0.75 mm,如图3(b)所示,通过改变每根纤维束材料属性,实现CN-1及CN-2混杂结构,复合材料的基体部分由布尔运算得到,如图3(c)所示。采用金相显微镜观察纤维分布情况如图4(a)和图4(b)所示,测得CF体积分数为68vol%,GF体积分数为70vol%,在ABAQUS中建立四边形RUC (Representative unit cell)单元[25],如图4(c)所示,计算纤维束增强树脂弹性参数,相关属性如表6和表7所示。
表 6 CF-GF层内混杂增强环氧树脂复合材料模型中CF、GF和2511-1A/BS环氧树脂的材料参数Table 6. Material paramenters of CF, GF and 2511-1A/BS epoxy for CF-GF intralayer hybrid reinforced epoxy composite modelMaterial E11/GPa E22=E33/GPa G12=G13/GPa G23/GPa {\mu }_{12} {\mu }_{13} {\mu }_{23} \rho /(kg·m−3) CF 234 20 9.2 7.4 0.3 0.3 0.34 1.77 GF 78.7 7 4.0 2.5 0.3 0.3 0.4 2.54 2511-1A/BS epoxy 3.1 — — — 0.3 — — 1.13 表 7 CF-GF层内混杂增强环氧树脂复合材料模型中CF和GF纤维束的力学性能Table 7. Mechanical properties of CF and GF fiber bundle for CF-GF intralayer hybrid reinforced epoxy composite modelMaterial E11/GPa E22=E33/GPa G12=G13/GPa G23/GPa μ12 μ13 μ23 CF fiber bundle 153 8.70 3.60 3.20 0.3 0.3 0.36 GF fiber bundle 52 5.27 2.48 1.88 0.3 0.3 0.40 2. 结果与讨论
2.1 CF-GF混杂增强环氧树脂复合材料低速冲击实验结果
极限载荷和吸收能量是表征低速冲击性能的主要数据。图5为CF-GF混杂增强环氧树脂复合材料的极限载荷和吸收能量。可以发现,不同能量下CF-GF混杂增强环氧树脂复合材料的极限载荷不同,CF-GF混杂增强环氧树脂复合材料50 J冲击能量的极限载荷较30 J冲击能量下更高,这是由于在同样配比下,较大的冲击能量对应更快的冲击速度,撞击时的应变率效应更明显[26]。其中,G结构抗冲击性能最弱,S-C结构吸收能量较大,I-C和CN-1结构极限载荷较高。随着能量的增加,极限载荷和吸收能量均增大,混杂结构可提高极限载荷和吸收能量。冲击面为CF时,极限载荷和吸收能量均较高。I-C结构极限载荷最高,相较于G结构提高了24%。I-G和S-G结构的极限载荷相差不大,均较小。两种层内混杂结构呈现出较高的极限载荷,相较于G结构提高了20%左右。冲击面纤维种类相同时,夹芯(S-C和S-G)结构的吸收能量大于层间混杂(I-C和I-G)结构。相同混杂结构中,冲击面为CF时吸收能量较大,S-C结构的吸收能量较C结构和G结构分别提高了10%和16%。CN-2结构的吸收能量大于CN-1结构,与面内混杂界面的分布有关系[27]。
2.2 CF-GF混杂增强环氧树脂复合材料低速冲击有限元结果
2.2.1 实验与数值模拟结果对比
图6为30 J能量冲击下C结构、I-C结构、S-G结构和CN-1结构的CF-GF混杂增强环氧树脂复合材料时间-载荷和时间-能量曲线。可知,极限载荷模拟结果略大于实验值,能量模拟数据略低。实验曲线随时间变化趋势与模拟曲线结果拟合度较高。
2.2.2 低速冲击损伤形态及破坏机制
图7为50 J能量冲击后CF-GF混杂增强环氧树脂复合材料C扫描及分层失效模拟(SDEG)结果。图8为50 J能量冲击后CF-GF混杂增强环氧树脂复合材料的分层损伤面积。图9为CF-GF混杂增强环氧树脂复合材料目视及模拟冲击面纤维损伤结果(SDV1)。图10为CF-GF混杂增强环氧树脂复合材料冲击背面基体目视损伤及数值模拟结果(SDV2)。可知,模拟结果与实验损伤形貌较一致,冲击面为CF (C、I-C、S-C)时,分层面积为菱形,纤维损伤沿Y方向,I-C结构背部基体损伤较少,S-C结构背部基体损伤区域较大且分层面积最大。冲击面为GF (G、I-G、S-G)时,分层面积接近椭圆形,纤维损伤集中于冲击点下方,冲击面损伤呈圆圈状,冲击背面表现为菱形损伤,I-G结构与S-G结构背面基体破坏形貌类似,I-G结构分层面积最小。层内混杂结构的冲击面纤维损伤形貌与C结构类似,但面内损伤传播连续性较低,CF纤维束内SDV1损伤较GF纤维束集中,且沿X轴有横向扩散,在远离冲击点处仍可观察到部分CF纤维束内SDV1失效,而相邻GF纤维束未出现破坏。SDV2损伤由冲击点正下方向四周扩散,经混杂界面后损伤程度明显降低,大多数损伤发生在CF纤维束内,说明CF纤维束对相邻的GF纤维束有保护作用。CN-1结构的纤维损伤较CN-2结构低,纤维束内基体损伤较CN-2高,混杂界面对面内损伤的抑制作用在CN-1结构中更明显。层内混杂结构的树脂损伤由冲击点向下扩展,应力分布呈菱形,底部断裂沿Y方向。30 J能量冲击后损伤形貌与其类似,不再赘述。
前期已对30 J能量冲击下C结构、G结构、I-C结构和S-C结构的CF-GF混杂增强环氧树脂复合材料内部损伤进行了分析[28]。图11为30 J能量冲击后I-G、S-G、CN-1、CN-2的CF-GF混杂增强环氧树脂复合材料Micro-CT扫描横截面损伤。可知,冲击方向沿Z轴向下,白色区域为GF层,黑色区域为CF层。I-G结构和S-G结构冲击区域形变不明显,这是由于GF韧性大,变形恢复性好。I-G结构冲击点附近及内部GF层出现纤维断裂损伤,CF层未观察到破坏。S-G结构上部及内部界面有分层损伤,冲击面GF纵向脆断明显,内部CF层损伤较少。CN-1结构中纤维损伤由冲击点向下传播,底部有少量分层。CN-2结构中冲击面GF受剪切力,损伤范围广,复合材料底部观察到分层损伤。
图12为不同时刻I-C和CN-1的CF-GF混杂增强环氧树脂复合材料纤维损伤(SDV1)情况。图13为不同时刻I-C和CN-1的CF-GF混杂增强环氧树脂复合材料基体损伤(SDV2)情况。可知,I-C结构显示横截面损伤,CN-1结构显示冲击面纤维损伤及冲击背面基体损伤。纤维损伤程度小于基体损伤,基体损伤首先出现在冲击点周围及复合材料背部,冲头达到最低位置时,底部界面有明显分层破坏。I-C结构的失效过程与CN-1结构有区别,I-C结构中纤维损伤主要集中在冲击面CF层及内部GF层,CN-1结构中CF束首先出现破坏,损伤方向沿Y轴,大多数损伤被限制在混杂界面之间。随着冲头下移,纤维损伤沿X轴增加,且GF纤维束内开始出现纤维破坏,CF纤维束中基体破坏呈三角形,沿X轴损伤严重,GF纤维束内损伤较少,部分CF纤维束在远离冲击点区域仍有损伤,而临近的GF纤维束内基体损伤较少。
3. 结 论
(1)相同混杂比条件下,碳纤维-玻璃纤维层间混杂增强环氧树脂复合材料抗冲击性能较好,I-C结构极限载荷较大,S-C结构吸收能量较多。I-G结构和S-G结构对冲击响应区别不明显,抗冲击性能差别不大。CN-1结构比CN-2结构具有更高的极限载荷,CN-2结构的损伤容限较高。
(2)混杂结构可有效降低冲击损伤,I-C结构和CN-1结构内部的纤维及基体损伤程度较其他混杂结构低,夹芯(S-C、S-G)结构表现出明显的分层损伤,其中S-C结构和CN-2结构分层损伤面积较大。CN-1结构的冲击面纤维损伤较CN-2结构轻,冲击背面基体损伤较CN-2结构严重。
(3)层间混杂结构抗冲击性能受混杂界面数量影响,其中玻璃纤维层形变恢复性高而损伤较大,碳纤维层形变量小且损伤较低。层内混杂结构面内损伤具有取向性,面内混杂界面对抑制损伤传播具有积极作用,损伤扩展连续性较层间混杂结构低,应力在碳纤维束内传播速度快且广,碳纤维束承担了大部分冲击损伤,临近玻璃纤维束内损伤较小。
-
表 1 2A14铝合金的化学成分及含量
Table 1 Chemical composition of 2A14 aluminum alloy
wt% Si Cu Mg Mn Fe Zn Ti Ni Al 0.6–1.2 3.9–4.8 0.4–0.8 0.4–1.0 0–0.7 ≤0.3 ≤0.15 ≤0.1 Balance 表 2 SiCP/2A14复合材料母材及不同道次FSP的SiCP/2A14复合材料晶粒尺寸和高角度晶界(HAGB)含量
Table 2 Grain sizes and high angle grain boundary (HAGB) contents of SiCP/2A14 composite BM and SiCP/2A14 composites with different pass of FSP
Grain size/μm Content of HAGB/% BM 9.30 62.0 1-pass FSP 4.73 86.9 2-pass FSP 3.14 88.9 3-pass FSP 5.56 86.5 4-pass FSP 6.60 87.3 表 3 T6状态下SiCP/2A14复合材料室温拉伸性能
Table 3 Tensile properties of SiCP/2A14 composites in T6 state
State Yield strength/MPa Ultimate tensile strength/MPa Elongation/
%BM-T6 417 475 4.5 2-pass-T6 536 587 3.4 表 4 未经FSP处理的SiCP/2A14复合材料在不同高温拉伸条件下的延伸率
Table 4 Elongation of SiCP/2A14 composites without FSP under different high temperature tensile conditions
Temperature/℃ Elongation/% 1×10−3 s−1 1×10−2 s−1 1×10−1 s−1 460 189 152 94 480 203 194 118 500 261 223 116 520 220 158 43 -
[1] SALIH O S, OU H, SUN W, et al. A review of friction stir welding of aluminium matrix composites[J]. Materials & Design,2015,86:61-71.
[2] HASSAN A M, ALMOMANI M, QASIM T, et al. Effect of processing parameters on friction stir welded aluminum matrix composites wear behavior[J]. Materials and Manufacturing Processes,2012,27(12):1419-1423. DOI: 10.1080/10426914.2012.700156
[3] 李惠, 焦雷, 梅运柱, 等. 挤压对ZrB2/6063Al复合材料组织及其摩擦磨损特性的影响[J]. 稀有金属材料与工程, 2017, 46(10):3017-3022. LI H, JIAO L, MEI Y Z, et al. Effects of extrusion on microstructure and friction wear resistance in situ ZrB2/6063Al aluminum matrix composites[J]. Rare Metal Materials and Engineering,2017,46(10):3017-3022(in Chinese).
[4] 肖伯律, 黄治冶, 马凯, 等. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1):59-72. XIAO B L, HUANG Z Y, MA K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites[J]. Acta Metallurgica Sinica,2019,55(1):59-72(in Chinese).
[5] GHANDVAR H, FARAHANY S, IDRIS J. Wettability enhancement of SiCP in cast A356/SiCP composite using semisolid process[J]. Materials and Manufacturing Processes,2015,30(12):1442-1449. DOI: 10.1080/10426914.2015.1004687
[6] HASHIM J, LOONEY L, HASHMI M S J. Metal matrix composites: Production by the stir casting method[J]. Journal of Materials Processing Technology,1999,92-93(99):1-7.
[7] 韩远飞, 孙相龙, 邱培坤, 等. 颗粒增强钛基复合材料先进加工技术研究与进展[J]. 复合材料学报, 2017, 34(8):1625-1635. HAN Y F, SUN X L, QIU P K, et al. Research and development of processing technology on particulate reinforced titanium matrix composites[J]. Acta Materiae Compositae Sinica,2017,34(8):1625-1635(in Chinese).
[8] 郭炜, 王渠东. 大塑性变形制备超细晶复合材料的研究进展[J]. 锻压技术, 2010, 35(1):4-9. DOI: 10.3969/j.issn.1000-3940.2010.01.002 GUO W, WANG Q D. Research progress of fabricating ultrafine-grained composites by severe plastic deformation[J]. Forging & Stamping Technology,2010,35(1):4-9(in Chinese). DOI: 10.3969/j.issn.1000-3940.2010.01.002
[9] MISHRA R S, MA Z Y, CHARIT I. Friction stir processing: A novel technique for fabrication of surface composite[J]. Materials Science & Engineering A,2003,341(1-2):307-310.
[10] MISHRA R S, MAHONEY M W. Friction stir processing: A new grain refinement technique to achieve high strain rate superplasticity in commercial alloys[J]. Materials Science Forum,2001,357-359:507-514.
[11] DU Z, TAN M J, GUO J F, et al. Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP)[J]. Materials Science & Engineering A,2016,667:125-131. DOI: 10.1016/j.msea.2016.04.094
[12] ZHANG W, DING H, CAI M, et al. Ultra-grain refinement and enhanced low-temperature superplasticity in a friction stir-processed Ti-6Al-4V alloy[J]. Materials Science & Engineering A,2018,727:90-96.
[13] SAIKRISHNA N, PRADEEP K R G, MUNIRATHINAM B, et al. Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy[J]. Journal of Magnesium and Alloys,2016,4(1):68-76. DOI: 10.1016/j.jma.2015.12.004
[14] 陈菲菲, 黄宏军, 薛鹏, 等. 搅拌摩擦加工超细晶材料的组织和力学性能研究进展[J]. 材料研究学报, 2018, 32(1):1-11. DOI: 10.11901/1005.3093.2017.146 CHEN F F, HUANG H J, XUE P, et al. Research progress on microstructure and mechanical properties of friction stir processed ultrafine-grained materials[J]. Chinese Journal of Materials Research,2018,32(1):1-11(in Chinese). DOI: 10.11901/1005.3093.2017.146
[15] JU X F, ZHANG F G, CHEN Z, et al. Microstructure of multi-pass friction-stir-processed Al-Zn-Mg-Cu alloys reinforced by nano-sized TiB2 particles and the effect of T6 heat treatment[J]. Metals,2017,7(12):530. DOI: 10.3390/met7120530
[16] ZHAO Y T, KAI X Z, CHEN G, et al. Effects of friction stir processing on the microstructure and superplasticity of in situ nano-ZrB2/2024Al composite[J]. Progress in Natural Science: Materials International,2016,26(1):69-77.
[17] PRATER T. Friction stir welding of metal matrix composites for use in aerospace structures[J]. Acta Astronautica,2014,93:366-373. DOI: 10.1016/j.actaastro.2013.07.023
[18] OUYANG Q B, LI R X, WANG W L, et al. Light weight and high modulus aluminum matrix composite and its application into aerospace[J]. Materials Science Forum,2007,546-549:1551-1554.
[19] ARORA H S, SINGH H, DHINDAW B K. Composite fabrication using friction stir processing—a review[J]. The International Journal of Advanced Manufacturing Technology,2012,61(9-12):1043-1055. DOI: 10.1007/s00170-011-3758-8
[20] 张璐, 张大童, 曹耿华. 搅拌摩擦加工制备羟基磷灰石增强镁复合材料的微观组织和力学性能[J]. 复合材料学报, 2019, 36(10):2341-2347. ZHANG L, ZHANG D T, CAO G H. Microstructure and mechanical properties of hydroxyapatite reinforced magnesium composites prepared by friction stirring processing[J]. Acta Materiae Compositae Sinica,2019,36(10):2341-2347(in Chinese).
[21] XUE P, WANG B B, CHEN F F, et al. Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure[J]. Materials Characterization,2016,121:187-194. DOI: 10.1016/j.matchar.2016.10.009
[22] MOUSTAFA E. Effect of multi-pass friction stir processing on mechanical properties for AA2024/Al2O3 nanocomposites[J]. Materials,2017,10(9):1053. DOI: 10.3390/ma10091053
[23] HUANG H Y, FAN G L, TAN Z Q, et al. Superplastic behavior of carbon nanotube reinforced aluminum composites fabricated by flake powder metallurgy[J]. Materials Science & Engineering A,2017,699:55-61.
[24] 焦雷, 赵玉涛, 王晓路, 等. 铝基复合材料高应变速率及低温超塑性的研究进展[J]. 材料导报, 2013, 27(3):119-123, 132. DOI: 10.3969/j.issn.1005-023X.2013.03.025 JIAO L, ZHAO Y T, WANG X L, et al. The development of high strain rate and low temperature superplasticity in aluminum matrix composites[J]. Materials Review,2013,27(3):119-123, 132(in Chinese). DOI: 10.3969/j.issn.1005-023X.2013.03.025
-