In-situ solution polymerization and properties of chitosan-graphene oxide/thermoplastic polyurethane composites
-
摘要: 为了制备高力学性能、阻隔性能和导热性能的热塑性聚氨酯(TPU)复合材料,采用改进的原位溶液聚合法,将壳聚糖改性的氧化石墨烯(CS-GO)与TPU预聚体接枝,再经扩链反应得到CS-GO/TPU复合材料。利用FTIR、XRD、FESEM对CS-GO进行表征,并采用万能试验机、氧气透过仪和导热仪对CS-GO/TPU复合材料的性能进行测试分析。结果表明:CS与GO之间存在氢键作用,CS-GO在TPU基体中的分散性优于GO。CS-GO的均匀分散有效阻隔了O2的渗透,提高了CS-GO/TPU复合材料的阻隔性能。CS-GO与TPU基体之间的相互作用有利于应力载荷的传递和导热网络的形成,与纯TPU相比,当CS-GO含量为1wt%时,CS-GO/TPU复合材料的拉伸强度和断裂伸长率分别提高了106.8%和111.2%,导热系数提高了1.55倍。Abstract: An improved in-situ solution polymerization method was used in order to prepare the thermoplastic polyurethane (TPU) composite with high mechanical properties, barrier properties and thermal conductivity. Graphene oxide modified by chitosan (CS-GO) was grafted onto TPU prepolymer, then CS-GO/TPU composite was synthesized by chain extension reaction. The microstructure of CS-GO was characterized by FTIR, XRD and FESEM. The properties of CS-GO/TPU composites were tested by universal testing machine, oxygen transmission instrument and thermal conductivity meter. The results show that there is a hydrogen bond between CS and GO, and the dispersibility of CS-GO in the TPU matrix is better than GO. The enhancement of barrier property of CS-GO/TPU composites is due to the uniform dispersion of CS-GO which can effectively block the penetration of oxygen. The interaction between CS-GO and TPU matrix has positive effect on the transmission of stress load and the formation of a thermally conductive network. Compared with the pristine TPU, when mass fraction of the CS-GO is 1wt%, the tensile strength and elongation at break of CS-GO/TPU composites are increased by 106.8% and 111.2%, respectively; the thermal conductivity is 1.55 times higher than the pristine TPU.
-
-
-
[1] 曹宁宁, 郑玉婴, 刘阳龙, 等. 层叠状功能化石墨烯纳米带/TPU复合材料薄膜的制备与性能[J]. 复合材料学报, 2016, 33(7):1371-1381. CAO N N, ZHENG Y Y, LIU Y L, et al. Fabrication and properties of stack-like functionalized graphene nanoribbons/TPU composite films[J]. Acta Materiae Compositae Sinica,2016,33(7):1371-1381(in Chinese).
[2] DADBAKHSH S, VERBELEN L, VANDEPUTTE T, et al. Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer[J]. Physics Procedia,2016,83:971-980. DOI: 10.1016/j.phpro.2016.08.102
[3] XIAO J H, GAO Y F. The manufacture of 3D printing of medical grade TPU[J]. Progress in Additive Manufacturing,2017,2(3):117-123. DOI: 10.1007/s40964-017-0023-1
[4] 余芳, 张才前, 马艳萍. TPU-羊毛机织物复合防水透湿织物的开发[J]. 毛纺科技, 2017, 45(9):34-37. YU F, ZHANG C Q, MA Y P. Development of TPU-wool woven laminate waterproof and moisture permeable fabrics[J]. Wool Textile Journal,2017,45(9):34-37(in Chinese).
[5] 欧忠星, 郑玉婴, 肖东升, 等. 功能化改性还原氧化石墨烯-碳纳米管/热塑性聚氨酯复合材料膜的制备及性能[J]. 复合材料学报, 2016, 33(3):486-494. OU Z X, ZHENG Y Y, XIAO D S, et al. Prepararion and properties of functional modification reduced graphene oxide-carbon nanotubes/thermoplastic polyurethane composite films[J]. Acta Materiae Compositae Sinica,2016,33(3):486-494(in Chinese).
[6] DERVIN S, DIONYSIOU D D, PILLAI S C. 2D nanostructures for water purification: Graphene and beyond[J]. Nanoscale,2016,8(33):15115-15131. DOI: 10.1039/C6NR04508A
[7] KANG D H, SEO K S, LEE H Y, et al. Experimental study on mechanical strength of GO-cement composites[J]. Construction and Building Materials,2017,131:303-308. DOI: 10.1016/j.conbuildmat.2016.11.083
[8] ZHAO L, SUN H, KIM N, et al. Hydrogen gas barrier property of polyelectrolyte/GO layer-by-layer films[J]. Journal of Applied Polymer Science,2015,132(20):41973.
[9] 高玲玲, 王振宇, 饶伟丽, 等. 骨胶原蛋白-壳聚糖共混膜中分子间作用红外光谱分析[J]. 农业工程学报, 2018, 34(3):285-291. GAO L L, WANG Z Y, RAO W L, et al. Molecular interaction analysis between collagen and chitosan blend film based on infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(3):285-291(in Chinese).
[10] YU B W, XU J, LIU J H, et al. Adsorption behavior of copper ions on graphene oxide-chitosan aerogel[J]. Journal of Environmental Chemical Engineering,2013,1(4):1044-1050. DOI: 10.1016/j.jece.2013.08.017
[11] 张中勋, 刘霞, 刘杨, 等. 氧化石墨烯修饰壳聚糖药物载体的构建[J]. 高分子材料科学与工程, 2019, 35(8):137-143. ZHANG Z X, LIU X, LIU Y, et al. Construction of graphene oxide modified chitosan drug carrier[J]. Polymer Materials Science & Engineering,2019,35(8):137-143(in Chinese).
[12] PAN Y Z, WU T F, BAO H Q, et al. Green fabrication of chitosan films reinforced with parallel aligned graphene oxide[J]. Carbohydrate Polymers,2011,83(4):1908-1915. DOI: 10.1016/j.carbpol.2010.10.054
[13] 白静静, 尹建宇, 高雄. 异氰酸酯功能化氧化石墨烯/热塑性聚氨酯弹性体复合材料的制备与性能[J]. 复合材料学报, 2018, 35(7):1683-1690. BAI J J, YIN J Y, GAO X. Preparation and characterization of isocyanate functionalized graphene oxide/thermoplastic polyurethane elastomer composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1683-1690(in Chinese).
[14] CHEN D Q, CHEN G H. In situ synthesis of thermoplastic polyurethane/graphene nanoplatelets conductive composite by ball milling[J]. Journal of Reinforced Plastics and Composites,2013,32(5):300-307. DOI: 10.1177/0731684412471230
[15] YEH T F, SYU J M, CHENG C, et al. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Advanced Functional Materials,2010,20(14):2255-2262. DOI: 10.1002/adfm.201000274
[16] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009. Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic: Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
[17] 中国国家标准化管理委员会. 塑料薄膜和薄片气体透过性试验方法: 压差法: GB/T 1038—2000[S]. 北京: 中国标准出版社, 2000. Standardization Administration of the People’s Republic of China. Determination of gas transmission for plastics film and sheeting: Differential-pressure method: GB/T 1038—2000[S]. Beijing: China Standards Press, 2000(in Chinese).
[18] SAMUELS R J. Solid state characterization of the structure of chitosan films[J]. Journal of Polymer Science Part A: Polymer Chemistry,2010,19(7):1081-1105.
[19] 樊志敏, 郑玉婴, 刘先斌, 等. 功能氧化石墨烯/热塑性聚氨酯复合材料薄膜的制备及阻隔性能[J]. 复合材料学报, 2015, 32(3):705-711. FAN Z M, ZHENG Y Y, LIU X B, et al. Preparation and barrier properties of functional graphene oxide/thermoplastic polyurethane composite films[J]. Acta Materiae Compositae Sinica,2015,32(3):705-711(in Chinese).
[20] 符博支, 高洋洋, 冯予星, 等. 聚合物纳米石墨烯复合材料导热性能研究进展[J]. 功能材料, 2019, 50(8):8065-8075. FU B Z, GAO Y Y, FENG Y X, et al. Progress in thermal conductivity of polymer nano-graphene nanocomposites[J]. Journal of Functional Materials,2019,50(8):8065-8075(in Chinese).
-
期刊类型引用(5)
1. 李龙,张弦,吴磊. 导电纱线制备方法与应用的研究进展. 纺织学报. 2023(07): 214-221 . 百度学术 2. 韦会鸽,李桂星,万同,陈安利,彭紫芳,张欢. 聚乳酸基聚苯胺柔性可降解超级电容器的制备与性能. 复合材料学报. 2022(01): 193-202 . 本站查看 3. 杜佳琪,陈俊琳,冀佳帅,张利,刘伟,宋朝霞. Co类普鲁士蓝/多壁碳纳米管纳米复合材料的制备及其超电容性能. 复合材料学报. 2022(06): 2724-2733 . 本站查看 4. 辛国祥,王蒙蒙,翟耀,王艳辉,张邦文,宋金玲,刘晓旭. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料. 复合材料学报. 2021(04): 1272-1282 . 本站查看 5. 程飞阳,祝国成. 石墨烯改性纺织品研究进展. 现代纺织技术. 2021(04): 107-114 . 百度学术 其他类型引用(1)
-