壳聚糖-氧化石墨烯/热塑性聚氨酯复合材料的原位溶液聚合及性能

张钊滟, 马帅, 卢鑫, 郑玉婴, 林腾飞

张钊滟, 马帅, 卢鑫, 等. 壳聚糖-氧化石墨烯/热塑性聚氨酯复合材料的原位溶液聚合及性能[J]. 复合材料学报, 2020, 37(11): 2726-2734. DOI: 10.13801/j.cnki.fhclxb.20200302.002
引用本文: 张钊滟, 马帅, 卢鑫, 等. 壳聚糖-氧化石墨烯/热塑性聚氨酯复合材料的原位溶液聚合及性能[J]. 复合材料学报, 2020, 37(11): 2726-2734. DOI: 10.13801/j.cnki.fhclxb.20200302.002
ZHANG Zhaoyan, MA Shuai, LU Xin, et al. In-situ solution polymerization and properties of chitosan-graphene oxide/thermoplastic polyurethane composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2726-2734. DOI: 10.13801/j.cnki.fhclxb.20200302.002
Citation: ZHANG Zhaoyan, MA Shuai, LU Xin, et al. In-situ solution polymerization and properties of chitosan-graphene oxide/thermoplastic polyurethane composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2726-2734. DOI: 10.13801/j.cnki.fhclxb.20200302.002

壳聚糖-氧化石墨烯/热塑性聚氨酯复合材料的原位溶液聚合及性能

详细信息
    通讯作者:

    郑玉婴,博士,教授,博士生导师,研究方向为功能高分子复合材料 E-mail:yyzheng@fzu.edu.cn

    林腾飞,博士,讲师,研究方向为高分子复合材料  E-mail:tflin@fzu.edu.cn

  • 中图分类号: TB332

In-situ solution polymerization and properties of chitosan-graphene oxide/thermoplastic polyurethane composites

  • 摘要: 为了制备高力学性能、阻隔性能和导热性能的热塑性聚氨酯(TPU)复合材料,采用改进的原位溶液聚合法,将壳聚糖改性的氧化石墨烯(CS-GO)与TPU预聚体接枝,再经扩链反应得到CS-GO/TPU复合材料。利用FTIR、XRD、FESEM对CS-GO进行表征,并采用万能试验机、氧气透过仪和导热仪对CS-GO/TPU复合材料的性能进行测试分析。结果表明:CS与GO之间存在氢键作用,CS-GO在TPU基体中的分散性优于GO。CS-GO的均匀分散有效阻隔了O2的渗透,提高了CS-GO/TPU复合材料的阻隔性能。CS-GO与TPU基体之间的相互作用有利于应力载荷的传递和导热网络的形成,与纯TPU相比,当CS-GO含量为1wt%时,CS-GO/TPU复合材料的拉伸强度和断裂伸长率分别提高了106.8%和111.2%,导热系数提高了1.55倍。
    Abstract: An improved in-situ solution polymerization method was used in order to prepare the thermoplastic polyurethane (TPU) composite with high mechanical properties, barrier properties and thermal conductivity. Graphene oxide modified by chitosan (CS-GO) was grafted onto TPU prepolymer, then CS-GO/TPU composite was synthesized by chain extension reaction. The microstructure of CS-GO was characterized by FTIR, XRD and FESEM. The properties of CS-GO/TPU composites were tested by universal testing machine, oxygen transmission instrument and thermal conductivity meter. The results show that there is a hydrogen bond between CS and GO, and the dispersibility of CS-GO in the TPU matrix is better than GO. The enhancement of barrier property of CS-GO/TPU composites is due to the uniform dispersion of CS-GO which can effectively block the penetration of oxygen. The interaction between CS-GO and TPU matrix has positive effect on the transmission of stress load and the formation of a thermally conductive network. Compared with the pristine TPU, when mass fraction of the CS-GO is 1wt%, the tensile strength and elongation at break of CS-GO/TPU composites are increased by 106.8% and 111.2%, respectively; the thermal conductivity is 1.55 times higher than the pristine TPU.
  • 图  1   壳聚糖-氧化石墨烯(CS-GO)的结构示意图

    Figure  1.   Schematic illustration of chitosan-graphene oxide (CS-GO)

    图  2   CS-GO/热塑性聚氨酯(TPU)和GO/TPU复合材料制备流程

    Figure  2.   Schematic illustration of CS-GO/thermoplastic polyurethane (TPU) and GO/TPU composites

    PTMG—Polytetramethylene ether glycol; MDI—4,4’-methylene diisocyanate; BDO—1,4-butanediol; DTBL—Dibutyltin dilaurate

    图  3   GO、CS和CS-GO的FTIR图谱

    Figure  3.   FTIR spectra of GO, CS and CS-GO

    图  4   GO、CS和CS-GO的XRD图谱

    Figure  4.   XRD patterns of GO,CS and CS-GO

    图  5   CS(a)、GO(b)和CS-GO(c)的FESEM图像

    Figure  5.   FESEM images of CS(a), GO(b) and CS-GO(c)

    图  6   纯TPU(a)、CS-GO含量分别为0.25wt%(b)、0.5wt%(c)、0.75wt%(d)、1wt%(e)、1.25wt%(f)的CS-GO/TPU复合材料断面的FESEM图像

    Figure  6.   FESEM images of fracture surfaces of pristine TPU(a) and CS-GO/TPU composites with CS-GO mass fraction of 0.25wt%(b), 0.5wt%(c), 0.75wt%(d), 1wt%(e), 1.25wt%(f)

    图  7   GO含量分别为0.25wt%(a)、0.5wt%(b)、0.75wt%(c)的GO/TPU复合材料断面的FESEM图像

    Figure  7.   FESEM images of fracture surfaces of GO/TPU composites with GO mass fraction of 0.25wt%(a), 0.5wt%(b), 0.75wt%(c)

    图  8   GO/TPU和CS-GO/TPU复合材料的拉伸强度和断裂伸长率

    Figure  8.   Tensile strength and elongation at break of GO/TPU and CS-GO/TPU composites

    图  9   GO/TPU和CS-GO/TPU复合材料的O2透过率

    Figure  9.   O2 transmission rate of GO/TPU and CS-GO/TPU composites

    图  10   GO/TPU和CS-GO/TPU复合材料的导热系数

    Figure  10.   Thermal conductivities of GO/TPU and CS-GO/TPU composites

  • [1] 曹宁宁, 郑玉婴, 刘阳龙, 等. 层叠状功能化石墨烯纳米带/TPU复合材料薄膜的制备与性能[J]. 复合材料学报, 2016, 33(7):1371-1381.

    CAO N N, ZHENG Y Y, LIU Y L, et al. Fabrication and properties of stack-like functionalized graphene nanoribbons/TPU composite films[J]. Acta Materiae Compositae Sinica,2016,33(7):1371-1381(in Chinese).

    [2]

    DADBAKHSH S, VERBELEN L, VANDEPUTTE T, et al. Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer[J]. Physics Procedia,2016,83:971-980. DOI: 10.1016/j.phpro.2016.08.102

    [3]

    XIAO J H, GAO Y F. The manufacture of 3D printing of medical grade TPU[J]. Progress in Additive Manufacturing,2017,2(3):117-123. DOI: 10.1007/s40964-017-0023-1

    [4] 余芳, 张才前, 马艳萍. TPU-羊毛机织物复合防水透湿织物的开发[J]. 毛纺科技, 2017, 45(9):34-37.

    YU F, ZHANG C Q, MA Y P. Development of TPU-wool woven laminate waterproof and moisture permeable fabrics[J]. Wool Textile Journal,2017,45(9):34-37(in Chinese).

    [5] 欧忠星, 郑玉婴, 肖东升, 等. 功能化改性还原氧化石墨烯-碳纳米管/热塑性聚氨酯复合材料膜的制备及性能[J]. 复合材料学报, 2016, 33(3):486-494.

    OU Z X, ZHENG Y Y, XIAO D S, et al. Prepararion and properties of functional modification reduced graphene oxide-carbon nanotubes/thermoplastic polyurethane composite films[J]. Acta Materiae Compositae Sinica,2016,33(3):486-494(in Chinese).

    [6]

    DERVIN S, DIONYSIOU D D, PILLAI S C. 2D nanostructures for water purification: Graphene and beyond[J]. Nanoscale,2016,8(33):15115-15131. DOI: 10.1039/C6NR04508A

    [7]

    KANG D H, SEO K S, LEE H Y, et al. Experimental study on mechanical strength of GO-cement composites[J]. Construction and Building Materials,2017,131:303-308. DOI: 10.1016/j.conbuildmat.2016.11.083

    [8]

    ZHAO L, SUN H, KIM N, et al. Hydrogen gas barrier property of polyelectrolyte/GO layer-by-layer films[J]. Journal of Applied Polymer Science,2015,132(20):41973.

    [9] 高玲玲, 王振宇, 饶伟丽, 等. 骨胶原蛋白-壳聚糖共混膜中分子间作用红外光谱分析[J]. 农业工程学报, 2018, 34(3):285-291.

    GAO L L, WANG Z Y, RAO W L, et al. Molecular interaction analysis between collagen and chitosan blend film based on infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(3):285-291(in Chinese).

    [10]

    YU B W, XU J, LIU J H, et al. Adsorption behavior of copper ions on graphene oxide-chitosan aerogel[J]. Journal of Environmental Chemical Engineering,2013,1(4):1044-1050. DOI: 10.1016/j.jece.2013.08.017

    [11] 张中勋, 刘霞, 刘杨, 等. 氧化石墨烯修饰壳聚糖药物载体的构建[J]. 高分子材料科学与工程, 2019, 35(8):137-143.

    ZHANG Z X, LIU X, LIU Y, et al. Construction of graphene oxide modified chitosan drug carrier[J]. Polymer Materials Science & Engineering,2019,35(8):137-143(in Chinese).

    [12]

    PAN Y Z, WU T F, BAO H Q, et al. Green fabrication of chitosan films reinforced with parallel aligned graphene oxide[J]. Carbohydrate Polymers,2011,83(4):1908-1915. DOI: 10.1016/j.carbpol.2010.10.054

    [13] 白静静, 尹建宇, 高雄. 异氰酸酯功能化氧化石墨烯/热塑性聚氨酯弹性体复合材料的制备与性能[J]. 复合材料学报, 2018, 35(7):1683-1690.

    BAI J J, YIN J Y, GAO X. Preparation and characterization of isocyanate functionalized graphene oxide/thermoplastic polyurethane elastomer composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1683-1690(in Chinese).

    [14]

    CHEN D Q, CHEN G H. In situ synthesis of thermoplastic polyurethane/graphene nanoplatelets conductive composite by ball milling[J]. Journal of Reinforced Plastics and Composites,2013,32(5):300-307. DOI: 10.1177/0731684412471230

    [15]

    YEH T F, SYU J M, CHENG C, et al. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Advanced Functional Materials,2010,20(14):2255-2262. DOI: 10.1002/adfm.201000274

    [16] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic: Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).

    [17] 中国国家标准化管理委员会. 塑料薄膜和薄片气体透过性试验方法: 压差法: GB/T 1038—2000[S]. 北京: 中国标准出版社, 2000.

    Standardization Administration of the People’s Republic of China. Determination of gas transmission for plastics film and sheeting: Differential-pressure method: GB/T 1038—2000[S]. Beijing: China Standards Press, 2000(in Chinese).

    [18]

    SAMUELS R J. Solid state characterization of the structure of chitosan films[J]. Journal of Polymer Science Part A: Polymer Chemistry,2010,19(7):1081-1105.

    [19] 樊志敏, 郑玉婴, 刘先斌, 等. 功能氧化石墨烯/热塑性聚氨酯复合材料薄膜的制备及阻隔性能[J]. 复合材料学报, 2015, 32(3):705-711.

    FAN Z M, ZHENG Y Y, LIU X B, et al. Preparation and barrier properties of functional graphene oxide/thermoplastic polyurethane composite films[J]. Acta Materiae Compositae Sinica,2015,32(3):705-711(in Chinese).

    [20] 符博支, 高洋洋, 冯予星, 等. 聚合物纳米石墨烯复合材料导热性能研究进展[J]. 功能材料, 2019, 50(8):8065-8075.

    FU B Z, GAO Y Y, FENG Y X, et al. Progress in thermal conductivity of polymer nano-graphene nanocomposites[J]. Journal of Functional Materials,2019,50(8):8065-8075(in Chinese).

  • 期刊类型引用(5)

    1. 李龙,张弦,吴磊. 导电纱线制备方法与应用的研究进展. 纺织学报. 2023(07): 214-221 . 百度学术
    2. 韦会鸽,李桂星,万同,陈安利,彭紫芳,张欢. 聚乳酸基聚苯胺柔性可降解超级电容器的制备与性能. 复合材料学报. 2022(01): 193-202 . 本站查看
    3. 杜佳琪,陈俊琳,冀佳帅,张利,刘伟,宋朝霞. Co类普鲁士蓝/多壁碳纳米管纳米复合材料的制备及其超电容性能. 复合材料学报. 2022(06): 2724-2733 . 本站查看
    4. 辛国祥,王蒙蒙,翟耀,王艳辉,张邦文,宋金玲,刘晓旭. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料. 复合材料学报. 2021(04): 1272-1282 . 本站查看
    5. 程飞阳,祝国成. 石墨烯改性纺织品研究进展. 现代纺织技术. 2021(04): 107-114 . 百度学术

    其他类型引用(1)

图(10)
计量
  • 文章访问数:  2693
  • HTML全文浏览量:  692
  • PDF下载量:  96
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-12-09
  • 录用日期:  2020-02-17
  • 网络出版日期:  2020-03-02
  • 刊出日期:  2020-11-14

目录

    /

    返回文章
    返回