Hole diameter of honeycomb preform governing W diffusion uniformity in WC/Fe composites
-
摘要: 为探究蜂窝预制体孔径对WC/Fe复合材料中W扩散均匀性的影响,采用真空消失模铸渗(V-EPC)工艺制备不同孔径下的复合材料。检测W质量分数分布,发现预制体孔径较小或较大时W质量分数分布不均匀;而预制体孔径适中时W质量分数分布较均匀,其原孔壁与原孔心处W质量分数与硬度相差最小,复合层耐磨性最高。基于扩散动力学进行模拟,表明W扩散均匀性同时受扩散距离与扩散时间的影响。预制体孔径较小时,扩散距离虽短,但其孔内熔体凝固较快,扩散时间较短,不利于W扩散;预制体孔径较大时,其孔内熔体凝固虽慢,扩散时间较长,但扩散距离增长,仍不利于W扩散;预制体孔径适中时,因兼顾扩散距离与扩散时间,利于W扩散。W扩散均匀性较差时,预制体原孔心处W质量分数较小,硬度也较低,一定范围内降低复合层耐磨性。
-
关键词:
- 蜂窝预制体 /
- 预制体孔径 /
- 碳化钨(WC)/Fe复合材料 /
- W扩散均匀性 /
- 耐磨性
Abstract: In order to investigate the effect of hole diameter in honeycomb preform on the W diffusion uniformity, the WC/Fe composites with different diameters were fabricated by vacuum expendable pattern casting (V-EPC) process. Based on the W mass fraction distribution analysis, it is found that the W distributes uniformity when the hole diameter is too large or too smallthe, while wear resistance of WC/Fe composites with the proper hole diameter of preform is the best, and the differences of the W mass fraction and hardness between initial hole wall and initial hole center are reduced. The simulation results by diffusion dynamics show that the uniformity of W diffusion is both influenced by diffusion distance and diffusion time. The W diffusion is limited when the hole diameter is samll and the diffusion distance is short although the diffusion time decreases, resluted from the fast internal matrix solidification. The W diffusion is also limited when the hole diameter is large, although the internal matrix solidifies slow and the diffusion time increases, but the diffusion distance increases. So the proper hole diameter has positive influence on the W diffusion uniformity with reasonable diffusion distance and diffusion time. On the contrary, the W diffusion uniformity is undesirable, and the W mass fraction and the hardness at the initial hole center are lower, resulting in the reduction of wear resistance within a certain range. -
碳化钨颗粒增强钢铁基(WCP/Fe)复合材料因兼顾金属基体的良好韧性与陶瓷增强颗粒的高强度、高硬度、高模量而广泛应用于机械制造、能源开发、交通运输等领域,但基体与增强颗粒间热物理性能差异过大使复合材料在激冷激热环境下服役时产生热应力,诱发界面处裂纹的萌生与扩展[1-4]。而将WC充分溶解,W在熔体中均匀扩散形成合金化复合层能有效解决该问题,故研究WC/Fe复合材料中W扩散均匀性十分必要[5-7]。
蜂窝结构因形状连续、比强度高等特性而对复合材料的综合性能产生重要影响[8-10]。Magotteaux公司发明X-win蜂窝结构ZTAP/Fe复合材料技术,制造的磨辊使用寿命提高两倍以上[11];WU等[12]从模拟与实验角度出发,揭示预制体孔径与孔距作为蜂窝结构重要参数对复合材料力学性能的影响;SONG等[13]成功制备蜂窝结构还原氧化石墨烯增强环氧树脂(rGH/EP)复合材料,电磁屏蔽效能与导电性明显提升。但对蜂窝预制体结构与元素扩散均匀性间的关联机制仍研究较少。
本文采用真空消失模铸渗(V-EPC)工艺制备WC/Fe复合材料[14-15],选取孔径孔距比相同孔径不同的蜂窝预制体,并将W质量分数最高与最低的预制体原孔壁与原孔心处W质量分数作为W扩散均匀性的判断条件[16-17]。表征复合层的显微组织、物相组成、元素分布,并检测预制体原孔壁与原孔心处W质量分数、硬度及复合层耐磨性,揭示其孔径对W质量分数分布的影响规律。通过求解非稳态扩散方程得解析解,对预制体孔内熔体凝固时的热物理场进行有限元模拟,并通过二次开发程序对其原孔内W质量分数分布进行数值模拟,揭示其孔径对W扩散均匀性的影响机制;提出W扩散均匀性与复合层耐磨性间的关联机制,为工程应用提供理论依据。
1. 实验材料与方法
为避免铸渗时W粉因粒径过小而大量烧损,选取铸造WC颗粒(WC/W2CP)为合金化提供W;表1为WC/Fe复合材料中预制体的成分组成,配置预制体粉末300 g,与5wt%水玻璃粘结剂均匀混合;表2为WC/Fe复合材料中预制体的结构参数,填充到预制体孔径孔距比相同孔径不同的蜂窝模具内,其轮廓为50 mm×100 mm×6 mm;采用CO2硬化与微波烧结方法,得最终预制体。
表3为WC/Fe复合材料中基体的成分组成。配置基体并采用中频感应炉熔炼20 kg。图1为WC/Fe复合材料的制备过程,采用V-EPC工艺成型,浇注温度为1 500℃,型腔负压为0.05 MPa。
表 1 WC/Fe复合材料中预制体的成分Table 1. Composition of preform in WC/Fe compositesComposition Mass fraction/wt% Size/μm WC 40 150-200 Ni60 30 60-90 FeCr55C6.0 30 150-200 表 2 WC/Fe复合材料中预制体的结构参数Table 2. Structure parameters of preform in WC/Fe compositesDiameter R/mm Distance d/mm Number n 3 6 63 6 12 16 9 18 7 表 3 WC/Fe复合材料中基体的成分Table 3. Composition of matrix in WC/Fe compositesComposition C Cr Mn Si Fe Mass fraction/wt% 1.2-1.3 18.0-20.0 0.4-0.6 1.0-1.2 Balance 采用尼康MA200型OM表征复合层显微组织,并统计预制体原孔壁与原孔心处平均晶粒尺寸分布。采用岛津7000S/L型XRD、牛津仪器Ultim Extreme型EDS面扫描表征复合层物相组成、元素分布。采用牛津仪器Ultim Extreme型EDS点扫描、上海光学仪器厂HX1000型显微硬度计表征复合层预制体原孔壁与原孔心处元素质量分数、硬度。采用广州试验仪器厂MS-5E型三体磨料磨损机表征复合层耐磨性,载荷为2 kg、转速为40 r/min、预磨时间为30 min、磨粒粒径为200~550 μm,并采用蔡司EVO18型SEM表征预制体原孔心处磨损形貌。采用COMSOL Multiphysics 5.4有限元模拟预制体孔内熔体凝固时的热物理场。采用MATLAB R2015b通过二次开发程序数值模拟预制体原孔内W质量分数分布。
2. 结果与分析
2.1 WC/Fe复合材料复合层的显微组织与元素分布
图2为不同预制体孔径下WC/Fe复合材料复合层的显微组织。熔体填充预制体孔洞,WC高温下分解,W由其孔壁扩散至孔心处,形成复合层。图3为不同预制体孔径下WC/Fe复合材料复合层原孔内的平均晶粒尺寸分布,随预制体孔径增加,其原孔壁处晶粒尺寸基本不变,而在其原孔心处先减小后增大。
图4为不同预制体孔径下WC/Fe复合材料复合层原孔内的平均晶粒尺寸分布。表明复合层中均形成W2C、WC、Ni17W3、Fe3W3C、(Fe,Cr)3C。根据W-C相图,WC/W2CP中WC分解形成W2C、C,而C扩散到熔体中使(Fe,Cr)3C增多;根据Fe-W-C相图,熔体与W2C发生包晶反应形成Fe3W3C;WC、Ni60分解使W、Ni质量分数增加,形成镍钨化合物Ni17W3。
根据Fe-Cr-C相图[18-19],推测熔体(Cr:18.0wt%~20.0wt%,C:1.2wt%~1.3wt%)为典型亚共晶成分合金(Cr:11.0wt%~30.0wt%,C:<2.8wt%),凝固时先析出一次奥氏体枝晶,待温度降至共晶点发生共晶转变形成共晶奥氏体与二次碳化物的混合共晶组织,而复合层为网状形貌的M3C型碳化物[7,20]。图5为不同预制体孔径下WC/Fe复合材料复合层的元素分布。Cr分布在共晶奥氏体与二次碳化物中,W、Ni弥散分布在一次奥氏体枝晶内。
图6为不同预制体孔径下WC/Fe复合材料复合层原孔内的W质量分数分布。其原孔壁处W质量分数较高,而在其原孔心处较低。与晶粒尺寸的变化相反,随预制体孔径增加,其原孔壁处W质量分数基本不变,而在其原孔心处先增大后减小。为进一步表征W扩散均匀性,通过计算得不同预制体孔径下W扩散均匀性分别为84.1%、88.7%、86.9%,表明W扩散均匀性随其孔径增加而先增大后减小,W扩散均匀性的表达式为
δ=1−2√3πR2C(0,tmax (1) 式中:δ为W扩散均匀性;C(0,tmax)、C(R/2,tmax)分别为预制体原孔壁、原孔心处W质量分数。
2.2 WC/Fe复合材料复合层的硬度分布与耐磨性
图7为不同预制体孔径下WC/Fe复合材料复合层原孔内的硬度分布。其原孔壁处硬度较高,而在其原孔心处较低。与W质量分数的变化相同,随预制体孔径增加,其原孔壁处硬度基本不变,而在其原孔心处先增大后减小。图8为不同预制体孔径下WC/Fe复合材料复合层原孔心处的磨损形貌。R=3 mm时其原孔心处犁沟最明显,R=9 mm时次之,R=6 mm时最不明显。图9为不同预制体孔径下WC/Fe复合材料复合层的磨损量。表明复合层耐磨性随其孔径增加而先增大后减小。
2.3 WC/Fe复合材料复合层的W扩散均匀性机制
为进一步探究影响W扩散均匀性的因素,对预制体原孔内W质量分数分布进行数值模拟。将W扩散区看作受固液界面移动驱动的半无限大物体,且扩散时间近似为预制体孔内熔体凝固时间[21-22]。下式为W扩散区边界条件的表达式:
\left\{ \begin{array}{l} C\left( {x,t} \right) = {C_{{\rm{SL}}}},x = x\left( t \right) \\ C\left( {x,t} \right) = {C_{{\rm{LS}}}},x < x\left( t \right) \end{array}\right. (2) 式中,CSL、CLS分别为固液界面固、液相侧W质量分数。根据Arrhenius方程,W质量分数分布为
\left\{ \begin{array}{l} C\left( {x,t} \right) = \dfrac{{{C_{{\rm{SL}}}}}}{{{\rm{erf}}\left( k \right) - 1}}\left( {{\rm{erf}}\left( {\dfrac{x}{{2\sqrt {Dt} }}} \right) + 1} \right) \\ D = {D_0}{\rm{exp}}\left( { - \dfrac{{{E_{\rm{A}}}}}{{{k_{\rm{B}}}T}}} \right) \end{array} \right. (3) 式中:x为W扩散距离;t为W扩散时间;T为W扩散温度;D为W扩散系数;k为常数;EA为W元素扩散激活能;kB为玻尔兹曼常数[22]。W扩散总时间为
{t_{{\rm{max}}}} = \frac{{{R^2}}}{{64{k^2}D}} (4) 通过解析解得W扩散过程同时受温度与固液界面移动影响。故先采用有限元模拟软件COMSOL Multiphysics 5.4模拟预制体孔内熔体凝固时的温度场与相场,表4为预制体孔内熔体凝固时热物理场模拟的参数设置。图10为预制体孔内熔体凝固时热物理场的有限元模拟。发现固液界面明显存在,且其左侧温度较高,熔体为液相,而其右侧温度较低,熔体为固相,即其孔壁处熔体先凝固,且固液界面移动驱动W扩散。此外,随预制体孔径增加,其孔内熔体高温区增多,使其平均温度增高,W扩散系数受W扩散温度影响,扩散温度越高扩散系数越大,其原孔内W质量分数分布曲线斜率绝对值越大;图11为不同预制体孔径下WC/Fe复合材料复合层原孔内W质量分数分布的数值模拟。再将该有限元模拟结果代入数学分析软件MATLAB R2015b的二次开发程序中进行数值模拟,最终得其原孔内W质量分数分布曲线,发现其原孔内W质量分数为W扩散距离的单调递减函数。因预制体孔径孔距比相同且W扩散区为受固液界面移动驱动的半无限大物体,故设置W初始质量分数相同。随预制体孔径增加,其原孔内W质量分数分布曲线斜率绝对值增大,故R=3 mm时其原孔心处W质量分数较R=6 mm时低,但R=6 mm时W扩散距离较R=9 mm时短,故其原孔心处W质量分数R=6 mm时最高,R=9 mm时次之,R=3 mm时最低,即该数值模拟与实验结果相符。
表 4 预制体孔内熔体凝固时热物理场模拟的参数设置Table 4. Parameters setting of thermal physical field simulation when internal matrix of preform solidifiesPhase Density/(kg·m−3) Thermal conductivity/(W·m−1·K−1) Heat capacity/(J·kg−1·K−1) Fe(s) 8 500 200 400 Fe(l) 7 800 450 550 Inlet temperature/°C Melting temperature/°C Temperature transition half width/K Surface emissivity 1 500 1 100 50 0.8 Specific heat/(J·kg−1·K−1) Solidification latent heat/(kJ·kg−1) Heat transfer coefficient/(W·m−2·K−1) 60 200 800 预制体孔径较大时,其孔内熔体较多,温度也较高。一方面扩散时间较长,有利于W扩散;另一方面扩散距离较长,不利于W扩散均匀,使预制体原孔心处W质量分数降低。同理,预制体孔径较小时,扩散距离虽短,但扩散时间较短,使W扩散不充分,其原孔心处W质量分数较低,故W扩散均匀性也较低;故预制体孔径适中时,因兼顾扩散距离与扩散时间而使W扩散均匀性最高。综上所述,W扩散过程同时受扩散距离与扩散时间的影响。
2.4 WC/Fe复合材料复合层的耐磨性与W扩散均匀性间关联机制
亚共晶Fe-Cr-C系合金中含大量低硬度、高韧性的一次奥氏体,硬度、耐磨性较低,而W弥散分布在一次奥氏体枝晶内形成M6C型碳化物Fe3W3C,细化晶粒使复合层冲击韧性未明显降低,且引入硬质相使其硬度明显提高[20,23],一定范围内也提高其耐磨性[24]。W扩散均匀性越高,预制体原孔心处W质量分数越高,形成硬质相越多,硬度也越高,最终提高复合层耐磨性。
3. 结 论
采用真空消失模铸渗(V-EPC)工艺制备WC/Fe复合材料,选取预制体孔径孔距比相同孔径不同的蜂窝预制体,并将其原孔壁与原孔心处W质量分数作为W扩散均匀性的判断条件,得如下结论。
(1) WC高温下分解,W由预制体孔壁至孔心处扩散,形成弥散分布的硬质相Fe3W3C。
(2)预制体原孔壁与原孔心处W质量分数与硬度相差随孔径增加而先增大后减小,复合层耐磨性的变化亦然。
(3) W扩散均匀性同时受扩散距离与扩散时间的影响。预制体孔径较小时,扩散距离虽短,但扩散时间较短,不利于W扩散;预制体孔径较大时,扩散时间虽长,但扩散距离增长,仍不利于W扩散;预制体孔径适中时,因兼顾扩散距离与扩散时间,利于W扩散。
(4)耐磨性与W扩散均匀性间存在关联,W扩散均匀性越高,预制体原孔心处W质量分数越高,形成硬质相越多,硬度也越高,一定范围内复合层耐磨性也越高。
-
表 1 WC/Fe复合材料中预制体的成分
Table 1 Composition of preform in WC/Fe composites
Composition Mass fraction/wt% Size/μm WC 40 150-200 Ni60 30 60-90 FeCr55C6.0 30 150-200 表 2 WC/Fe复合材料中预制体的结构参数
Table 2 Structure parameters of preform in WC/Fe composites
Diameter R/mm Distance d/mm Number n 3 6 63 6 12 16 9 18 7 表 3 WC/Fe复合材料中基体的成分
Table 3 Composition of matrix in WC/Fe composites
Composition C Cr Mn Si Fe Mass fraction/wt% 1.2-1.3 18.0-20.0 0.4-0.6 1.0-1.2 Balance 表 4 预制体孔内熔体凝固时热物理场模拟的参数设置
Table 4 Parameters setting of thermal physical field simulation when internal matrix of preform solidifies
Phase Density/(kg·m−3) Thermal conductivity/(W·m−1·K−1) Heat capacity/(J·kg−1·K−1) Fe(s) 8 500 200 400 Fe(l) 7 800 450 550 Inlet temperature/°C Melting temperature/°C Temperature transition half width/K Surface emissivity 1 500 1 100 50 0.8 Specific heat/(J·kg−1·K−1) Solidification latent heat/(kJ·kg−1) Heat transfer coefficient/(W·m−2·K−1) 60 200 800 -
[1] 李祖来, 蒋业华, 周荣, 等. 碳化钨颗粒增强钢基表层复合材料的热物理特性[J]. 材料研究学报, 2014, 28(8):621-626. DOI: 10.11901/1005.3093.2013.913 LI Zulai, JIANG Yehua, ZHOU rong, et al. Thermo-physical characteristics of WC particle-reinforced steel substrate surface composites[J]. Chinese Journal of Materials Research,2014,28(8):621-626(in Chinese). DOI: 10.11901/1005.3093.2013.913
[2] 张玉波, 郭荣鑫, 夏海廷, 等. WCP含量对粉末冶金Cu/WCP复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1):85-92. DOI: 10.11868/j.issn.1001-4381.2015.001530 ZHANG Yubo, GUO Rongxin, XIA Haiting, et al. Effect of WCP content on fatigue crack growth behavior of powder metallurgy Cu/WCP composites[J]. Journal of Materials Engineering,2017,45(1):85-92(in Chinese). DOI: 10.11868/j.issn.1001-4381.2015.001530
[3] 山泉, 张亚峰, 张哲轩, 等. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2):115-121. DOI: 10.11868/j.issn.1001-4381.2017.001445 SHAN Quan, ZHANG Yafeng, ZHANG Zhexuan, et al. Effect of W content on compression and thermal fatigue behavior of WCP/steel matrix composites[J]. Journal of Materials Engineering,2019,47(2):115-121(in Chinese). DOI: 10.11868/j.issn.1001-4381.2017.001445
[4] 陈奉锐, 山泉, 李祖来, 等. 重熔温度对WCP/Fe复合材料界面特征及压缩断裂机制的影响[J]. 复合材料学报, 2018, 35(11):3106-3113. CHEN Fengrui, SHAN Quan, LI Zulai, et al. Effect of re-melting temperature on interface and compression fracture mechanism of WCP/Fe composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3106-3113(in Chinese).
[5] LIU A, GUO M, HU H L. Distribution and dissolution of WC particles in surface metal matrix composites produced by plasma melt injection[J]. Surface Engineering,2010,26(8):623-628. DOI: 10.1179/174329409X389317
[6] 吴迎飞, 陈华辉, 李海存, 等. 铁基复合材料中碳化W元素颗粒的溶解析出行为[J]. 材料工程, 2018, 8(8):98-105. DOI: 10.11868/j.issn.1001-4381.2016.000313 WU Yingfei, CHEN Huahui, LI Haicun, et al. Dissolution and precipitation behavior of WC particles in iron matrix composites[J]. Journal of Materials Engineering,2018,8(8):98-105(in Chinese). DOI: 10.11868/j.issn.1001-4381.2016.000313
[7] 隋育栋, 蒋业华, 李祖来, 等. WC溶解对WCp/钢基表层复合材料组织和性能的影响[J]. 材料热处理学报, 2012, 33(Z1):7-10. SUI Yudong, JIANG Yehua, LI Zulai, et al. Effects of WC dissolute in matrix on microstructure and properties of WC reinforced steel composite[J]. Transactions of Materials and Heat Treatment,2012,33(Z1):7-10(in Chinese).
[8] ANDREIKIV O E, SHTAYURA N S. Computational models of fatigue cracks growth in metallic materials under the action of force and physicochemical factors[J]. Materials Science,2019,54(4):465-476. DOI: 10.1007/s11003-019-00206-1
[9] HUANG C Q, NUNG K Y. Singular perturbation and bifurcation of diffuse transition layer in inhomogeneous media, part II[J]. Networks and Heterogeneous Media,2015,10(4):897-948. DOI: 10.3934/nhm.2015.10.897
[10] ZHOU Mojin, SUI Yudong, CHONG Xiaoyu, et al. Wear resistance mechanism of ZTAP/HCCI composites with a honeycomb structure[J]. Metals,2018,8:588. DOI: 10.3390/met8080588
[11] 周谟金, 蒋业华, 卢德宏, 等. B4C包覆ZTA颗粒增强铁基复合材料制备与性能[J]. 材料导报, 2018, 32(12):4324-4328. ZHOU Mojin, JIANG Yehua, LU Dehong, et al. Preparation and properties of the ZTA particles cover with B4C powder reinforced iron matrix composites[J]. Materials Reports,2018,32(12):4324-4328(in Chinese).
[12] WU Xiaorong, YU Hongjun, GUO Licheng, et al. Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure[J]. Composite Structures,2019,213:165-172. DOI: 10.1016/j.compstruct.2019.01.081
[13] SONG Ping, LIANG Chaobo, WANG Lei, et al. Obviously improved electromagnetic interference shielding preformances for epoxy composites via constructing honeycomb structural reduced graphene oxide[J]. Composites Science and Technology,2019,181:107698. DOI: 10.1016/j.compscitech.2019.107698
[14] XU Daqing, LUO Jirong, HUANG Naiyu. Structures and properties of iron matrix composites with W carbide particle by EPC-V process[J]. Journal of Iron and Steel Research International,1999,6(2):29-32.
[15] SHI Tao, GUO Leichen, HAO Junjie, et al. Microstructure and wear resistance of in-situ TiC surface composites coating on copper matrix synthesized by SHS and vacuum-expendable pattern casting[J]. Surface & Coatings Technology,2017,324:288-297.
[16] 李永坤, 李璐, 周荣锋, 等. ZCuSn10合金半固态流变挤压件显微组织的演变[J]. 材料导报, 2017, 31(16):60-64. DOI: 10.11896/j.issn.1005-023X.2017.016.013 LI Yongkun, LI Lu, ZHOU Rongfeng, et al. Microstructure evolution of semi-solid ZCuSn10 alloy prepared by rheological squeeze casting[J]. Materials Reports,2017,31(16):60-64(in Chinese). DOI: 10.11896/j.issn.1005-023X.2017.016.013
[17] LI Yongkun, ZHOU Rongfeng, LI Lu, et al. Microstructures formation, distribution of tin element and properties of CuSn10P1 alloy during controlled by melt cooling[J]. Materials Research Express,2018,5(6):066517. DOI: 10.1088/2053-1591/aac931
[18] JACKSON R S. The austenite liquidus surface and constitutional diagram for the Fe-Cr-C metastable system[J]. Journal of the Iron and Steel Institute,1970,208(2):163.
[19] TABRETT C P, SARE I R, GHOMASHCHI M R. Microstructure-property relationships in high chromium white iron alloys[J]. International Materials Reviews,1996,41(2):59-82. DOI: 10.1179/imr.1996.41.2.59
[20] 禹润缜, 刘胜新, 王朋旭, 等. Fe-Cr-C系硬面合金及其硬质相的研究进展[J]. 材料导报, 2018, 32(21):3780-3788. DOI: 10.11896/j.issn.1005-023X.2018.21.015 YU Runzhen, LIU Shengxin, WANG Pengxu, et al. A brief survey on the Fe-Cr-C hard facing alloys and its hard phases[J]. Materials Reports,2018,32(21):3780-3788(in Chinese). DOI: 10.11896/j.issn.1005-023X.2018.21.015
[21] 张建勋, 裴怡, 米运卿. 液相扩散焊等温凝固阶段的特征及解析解[J]. 焊管, 2004, 27(6):25-31. DOI: 10.3969/j.issn.1001-3938.2004.06.006 ZHANG Jianxun, PEI Yi, MI Yunqing. Characteristics of isothermal solidification stage and analytical solutions for the stage in transient liquid phase bonding process[J]. Welded Pipe and Tube,2004,27(6):25-31(in Chinese). DOI: 10.3969/j.issn.1001-3938.2004.06.006
[22] 刘安娜, 翟秋亚, 徐锦锋, 等. DD6单晶TLP焊保温时间及硼元素扩散距离的理论预测[J]. 热加工工艺, 2014, 43(19):190-193, 197. LIU Anna, ZHAI Qiuya, XU Jinfeng, et al. Prediction of temperature holding time and B element diffusion distance of TLP bonding for DD6 superalloy[J]. Hot Working Technology,2014,43(19):190-193, 197(in Chinese).
[23] 张哲轩, 周再峰, 山泉, 等. 表面W元素合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(Z1):362-365. ZHANG Zhexuan, ZHOU Zaifeng, SHAN Quan, et al. Effect of surface W alloying on microstructure and hardness of high chromium cast iron[J]. Materials Reports,2019,33(Z1):362-365(in Chinese).
[24] ZHOU Zaifeng, SHAN Quan, JIANG Yehua, et al. Effect of nanoscale V2C precipitates on the three-body abrasive wear behavior of high-Mn austenitic steel[J]. Wear,2019,436-437:203009. DOI: 10.1016/j.wear.2019.203009
-
期刊类型引用(0)
其他类型引用(1)
-