考虑面内载荷的复合材料层合板冲击性能

王计真, 刘小川

王计真, 刘小川. 考虑面内载荷的复合材料层合板冲击性能[J]. 复合材料学报, 2020, 37(8): 1868-1874. DOI: 10.13801/j.cnki.fhclxb.20191125.001
引用本文: 王计真, 刘小川. 考虑面内载荷的复合材料层合板冲击性能[J]. 复合材料学报, 2020, 37(8): 1868-1874. DOI: 10.13801/j.cnki.fhclxb.20191125.001
WANG Jizhen, LIU Xiaochuan. Impact resistance of composite panels under in-plane preloading[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1868-1874. DOI: 10.13801/j.cnki.fhclxb.20191125.001
Citation: WANG Jizhen, LIU Xiaochuan. Impact resistance of composite panels under in-plane preloading[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1868-1874. DOI: 10.13801/j.cnki.fhclxb.20191125.001

考虑面内载荷的复合材料层合板冲击性能

基金项目: 航空科学基金(2016ZA23009)
详细信息
    通讯作者:

    王计真,硕士,工程师,研究方向为冲击动力学 E-mail:wangjizhen623@163.com

  • 中图分类号: V271.1; O242

Impact resistance of composite panels under in-plane preloading

  • 摘要: 考虑面内初始载荷作用,开展复合材料层合板高速冲击响应与损伤特性研究。设计一种面内拉伸/压缩/剪切初始载荷施加装置,结合气炮试验装置,提出一种初始载荷复合材料高速冲击试验方法,针对X850/IM+和M21C/IMA两种牌号复合材料层合板开展高速冲击试验。结果表明:面内初始载荷对复合材料层合板高速冲击响应和损伤特性有显著影响;相比无初始载荷冲击情况,面内拉伸载荷作用提高了结构抗弯刚度,使冲击剩余速度提高,穿透速度降低,分层损伤面积减小;而面内压缩载荷则反之。
    Abstract: Taking the effect of the in-plane preloading into consideration, the impact behavior of composite panels was studied. A kind of in-plane loading device was designed to apply tension, compression and shear loads. The high-speed impact test method of preloaded composite structures was proposed with the gas gun and the in-plane loading device. Then high-speed impact tests for X850/IM+ and M21C/IMA composite panels were conducted. The test results show that the in-plane preload has a significant influence on the impact response. Compared with the non-preloaded impact process, the in-plane pre-tension raises the structural bending stiffness and the residual speed, resulting in a decrease of the penetration velocity and delamination area, while the effect of the in-plane pre-compression is opposite.
  • 图  1   复合材料层合板初始载荷施加装置

    Figure  1.   Preloading application device for composite laminates

    图  2   复合材料层合板高速冲击试验原理图

    Figure  2.   Schematic diagram of high-speed impact test for composite laminates

    图  3   X850/IM+复合材料层合板冲击反射/透射速度

    Figure  3.   Impact rebound/penetration speeds of X850/IM+ composite laminates

    图  4   M21C/IMA复合材料牌号层合板冲击反射/透射速度

    Figure  4.   Impact rebound/penetration speeds of M21C/IMA composite laminates

    图  5   X850/IM+层合板冲击损伤C扫描图像

    Figure  5.   Impact damage C-scanning images of X850/IM+ laminates

    图  6   M21C/IMA复合材料层合板冲击损伤C扫描图像

    Figure  6.   Impact damage C-scanning images of M21C/IMA composite laminates

    图  7   5×10−3拉伸X850/IM+复合材料层合板冲击后背面纤维撕裂

    Figure  7.   Torn fiber on the back of X850/IM+ composite laminatesunder 5×10−3 pretension

    表  1   复合材料层合板高速冲击试验矩阵

    Table  1   High-speed impact test matrix for composite laminates

    Initial velocity/(m·s−1)Preloading
    −5.0×10−305.0×10−3
    40 4 pieces 4 pieces 4 pieces
    50 4 pieces 4 pieces 4 pieces
    60 4 pieces 4 pieces 4 pieces
    下载: 导出CSV

    表  2   X850/IM+复合材料层合板冲击损伤面积

    Table  2   Impact damage areas of X850/IM+ composite laminates

    Initial velocity/
    (m·s−1)
    Tension/
    mm2
    Unload/
    mm2
    Compression/
    mm2
    40 215 224 573
    50 2 068 1 878 2 151
    60 1 950 2 001 2 614
    下载: 导出CSV

    表  3   M21C/IMA层合板冲击损伤面积

    Table  3   Impact damage areas of M21C/IMA laminates

    Initial velocity/(m·s−1)Tension/
    mm2
    Unload/
    mm2
    Compression/
    mm2
    40 236 559 986
    50 1 929 536 1 287
    60 1 804 1 888 1 867
    下载: 导出CSV
  • [1] 邵青, 何宇廷, 张腾, 等. 复合材料加筋板低速冲击损伤及剩余压缩强度试验研究[J]. 复合材料学报, 2014, 31(1):200-206. DOI: 10.3969/j.issn.1000-3851.2014.01.029

    SHAO Q, HE Y T, ZHANG T, et al. Experimental research on low-velocity impact and residual compressive strength of composite stiffened panels[J]. Acta Materiae Compositae Sinica,2014,31(1):200-206(in Chinese). DOI: 10.3969/j.issn.1000-3851.2014.01.029

    [2] 王念. 复合材料层合板冲击损伤及损伤容限研究[D]. 南京: 南京航空航天大学, 2014.

    WANG N. Research on impact damage and damage tolerance of composites laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).

    [3]

    WILLIAMS J G, ANDERSON M S, RHODES M D, et al. Recent developments in the design, testing and impact-damage tolerance of stiffened composite panels[M]//Fibrous Composites in Structural Design. US: Springer, 1980: 259-291.

    [4]

    SODERQUIST J R. Certification of civil composite aircraft structure[C]. SAE Technical Paper, 1981.

    [5]

    NETTLES A T, LANCE D G. The effect of compressive preload on the compression-after-impact strength of carbon/epox[R]. NASA Technical Paper TP3303. Washington: NASA, 1992.

    [6]

    HEIMBS S, BERGMANN T, SCHUELER D, et al. High velocity impact on preloaded composite plates[J]. Composite Structures,2014,111:158-168. DOI: 10.1016/j.compstruct.2013.12.031

    [7]

    TOSO N, JOHNSON A. LIBCOS—Significance of load upon impact behavior of composite structure, DLR/C EASA2009OP24[R]. Stuttgart: German Aerospace Center, 2009.

    [8]

    FAA Advisory Circular. Composite aircraft structures: AC 20.107B[S]. American: Federal Aviation Administration, 2009.

    [9]

    KELKAR A D, SANKAR J, GRACE C, et al. Behavior of tensile preloaded composites subjected to low-velocity impact loads[C]. PVP-American Society of Mechanical Engineers. Pressure Vessels and Piping Division Newsletter, 1997.

    [10]

    MITREVSKI T, MARSHALL I H, THOMSON R S, et al. Low-velocity impacts on preloaded GFRP specimens with various impactor shapes[J]. Composite Structure,2006,76(3):209-217. DOI: 10.1016/j.compstruct.2006.06.033

    [11]

    KURSUN A, ŞENEL M. Investigation of the effect of low-velocity impact on composite plates with preloading[J]. Experimental Techniques, 2013, 37.6: 41-48.

    [12]

    KURSUN A, SENEL M, ENGINSOY H M. Experimental and numerical analysis of low velocity impact on a preloaded composite plate[J]. Advances in Engineering Software,2015,90:41-52. DOI: 10.1016/j.advengsoft.2015.06.010

    [13]

    STARNES J H, RHODES M D, WILLIAMS J G. Effect of impact damage and holes on the compressive strength of a graphite/epoxy laminate[J]. Nondestructive Evaluation and Flaw Criticality for Composite Materials,1979,696:145-171.

    [14]

    HERSZBERG I, WELLER T. Impact damage resistance of buckled carbon/epoxy panels[J]. Composite Structures, 2006, 73(2): 130-137.

    [15]

    HEIMBS S, HELLER S, MIDDENDORF P, et al. Low velocity impact on CFRP plates with compressive preload: Test and modelling[J]. International Journal of Impact Engineering,2009,36(10):1182-1193.

    [16]

    HEIMBS S, BERGMANN T. High-velocity impact behaviour of prestressed composite plates under bird strike loading[J]. International Journal of Aerospace Engineering,2012,2012:372167.

    [17]

    CHOI I H. Low-velocity impact analysis of composite laminates under initial in-plane load[J]. Composite Structures,2008,86(1):251-257.

    [18]

    SUN C T, CHEN J K. On the impact of initially stressed composite laminates[J]. Journal of Composite Materials,1985,19(6):490-504. DOI: 10.1177/002199838501900601

    [19]

    SUN C T, CHATTOPADHYAY S. Dynamic response of anisotropic laminated plates under initial stress to impact of a mass[J]. Journal of Applied Mechanics,1975,42(3):693-698. DOI: 10.1115/1.3423664

    [20] 王计真, 刘小川. 预加载复合材料层合薄板低速冲击理论分析[J]. 应用力学学报, 2018, 35(6):1248-1253.

    WANG Jizhen, LIU Xiaochuan. Analysis of low-speed impact of preloaded composite laminates[J]. Chinese Journal of Applied Mechanics,2018,35(6):1248-1253(in Chinese).

    [21] 王计真. 预应力状态下复合材料板冲击响应数值方法研究[J]. 科学技术与工程, 2017, 17(4):25-31. DOI: 10.3969/j.issn.1671-1815.2017.04.003

    WANG Jizhen. Numerical method of impact response of composite plates under prestressed state[J]. Science Technology and Engineering,2017,17(4):25-31(in Chinese). DOI: 10.3969/j.issn.1671-1815.2017.04.003

图(7)  /  表(3)
计量
  • 文章访问数:  804
  • HTML全文浏览量:  311
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-24
  • 录用日期:  2019-11-17
  • 网络出版日期:  2019-11-24
  • 刊出日期:  2020-08-14

目录

    /

    返回文章
    返回