Processing math: 0%

钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响

孔祥清, 何文昌, 邢丽丽, 王学志

孔祥清, 何文昌, 邢丽丽, 等. 钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响[J]. 复合材料学报, 2020, 37(7): 1763-1773. DOI: 10.13801/j.cnki.fhclxb.20191106.001
引用本文: 孔祥清, 何文昌, 邢丽丽, 等. 钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响[J]. 复合材料学报, 2020, 37(7): 1763-1773. DOI: 10.13801/j.cnki.fhclxb.20191106.001
KONG Xiangqing, HE Wenchang, XING Lili, et al. Effect of steel fiber-polypropylene fiber hybrid additon on impact resistance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1763-1773. DOI: 10.13801/j.cnki.fhclxb.20191106.001
Citation: KONG Xiangqing, HE Wenchang, XING Lili, et al. Effect of steel fiber-polypropylene fiber hybrid additon on impact resistance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1763-1773. DOI: 10.13801/j.cnki.fhclxb.20191106.001

钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响

基金项目: 国家自然科学基金(51479168);辽宁省自然科学基金(SY2016001);辽宁省"兴辽英才计划"项目(XLYC1807044)
详细信息
    通讯作者:

    孔祥清,博士,教授,硕士生导师,研究方向为新型材料及结构力学性能 E-mail:xqkong@lnut.edu.cn

  • 中图分类号: TU528.572

Effect of steel fiber-polypropylene fiber hybrid additon on impact resistance of recycled aggregate concrete

  • 摘要: 为研究钢纤维(SF)与聚丙烯纤维(PPF)混杂后对再生混凝土(RAC)抗冲击性能的影响,采用落锤弯曲冲击试验装置对素RAC、SF/RAC、PPF/RAC和SF-PPF/RAC进行抗冲击试验;分析了不同纤维掺量和掺入方式对RAC抗冲击性能的影响;采用数理统计模型对冲击试验结果进行拟合和失效概率预测,并对SF-PPF/RAC抗冲击性能的阻裂增强机制进行深入分析。结果表明:单掺或混杂纤维均可提高RAC的抗冲击性能;其中混合掺入体积分数为1.5vol%的SF和体积分数为0.9vol%的PPF时,RAC抗冲击耗能的提高幅度最大,RAC基体的延性和韧性最佳。SF-PPF/RAC的抗冲击次数很好地服从两参数Weibull分布。SF与PPF混杂对改善RAC的抗冲击性能呈现出优异的混杂增强效应。
    Abstract: In order to investigate the effect of hybrid steel fibe (SF) and polypropylene fiber (PPF) on the impact resistance of the recycled aggregate concrete (RAC), the flexural impact resistances of plain RAC, SF/RAC, PPF/RAC and SF-PPF/RAC were studied by drop weight impact test. The effects of fiber content and the way of incorporation on the impact resistance of RAC were analyzed. The mathematical statistical model was used to fit the impact experimental results and predict the failure probability. The crack resistance enhancement mechanism of SF-PPF/RAC was further analyzed. The results indicate that both single fibers and hybrid fibers can improve the impact performance of RAC. The specimen with the hybrid volume fraction of 1.5vol% SF and volume fraction of 0.9vol% PPF is found to have the maximum increase in impact energy consumption and the best ductility and toughness in concrete matrix. The impact resistance numbers of SF-PPF/RAC are well subordinated to the two-parameter Weibull distribution. The SF-PPF exhibit significant hybrid effect on improving the impact resistance of RAC.
  • 纤维增强复合材料具有比强度高、比模量大等优点,已被广泛应用于航空航天等工业领域[1]。但复合材料对冲击敏感性较高,内部受低速冲击后会产生不可见损伤,造成安全隐患。碳纤维-玻璃纤维混杂复合材料是将碳纤维及玻璃纤维在同一种基体内成型的复合材料,可有效提高复合材料的力学性能[2-3]。目前对混杂复合材料低速冲击性能的研究主要集中在混杂结构和纤维种类上[4-5]。Swolfs等[6]研究发现,将低伸长率纤维放在层合板中间位置,可有效提高抗侵彻性能。Hung等[7]分析了碳纤维-玻璃纤维层间混杂复合材料低速冲击性能,发现将碳纤维置于冲击面时抗冲击性能更强。Manikandan等[8]研究发现,将韧性纤维置于复合材料背面可吸收更多冲击能量,原因是由于下部韧性层可为上部脆性层提供更大的变形。Sarasini等[9]对玻璃纤维-玄武岩纤维混杂复合材料进行低速冲击研究表明,玄武岩纤维为芯层的夹芯混杂结构吸收冲击能量更多,玻璃纤维为芯层时弯曲性能较好。有限元分析是分析低速冲击的有效手段,Liu等[10]对比了Puck、Hashin及Chang-Chang失效准则对低速冲击预测的区别,结果表明,三种准则在低速冲击响应和能量耗散方面的预测结果基本一致,在基体和分层损伤的预测上有所不同。Hou等[11]基于连续介质损伤力学(CDM)建立了含修补区域的复合材料低速冲击模型,采用基于断裂韧性的损伤变量,研究了修补区厚度及铺层结构对低速冲击性能的影响。Ebina等[12]对不同铺层结构的碳纤维复合材料进行低速冲击模拟,面内损伤采用增强连续介质力学(ECDM)模型,纤维损伤采用裂缝模型(SCM),层间采用界面单元(CZM),模拟结果与实验数据拟合度较高。Chen等[13]建立了碳纤维-玻璃纤维-玄武岩纤维复合材料低速冲击损伤模型,定义指数型损伤变量,研究发现,碳纤维为芯层的夹芯结构抗冲击性能较好,玄武岩-碳纤维混杂结构与碳纤维-玻璃纤维混杂结构的冲击响应类似。Wu等[14]建立了纱线尺度的三维正交碳纤维-玻璃纤维混杂复合材料低速冲击模型,采用代表性体积单元(RUC)计算复合材料层合板宏观力学参数,研究发现,冲击面为碳纤维时抗冲击性能更好,破坏主要为冲击面碳纤维断裂和上层纤维-基体分层损伤,冲击面为玻璃纤维时破坏主要为复合材料层合板背部分层损伤。由于冲击速度较低,应变率效应不明显,大多数复合材料低速冲击研究会忽略应变率效应[15-16]。部分低速冲击数值模拟研究考虑了应变率效应,Wang等[17]建立了应变率相关的碳纤维复合材料低速冲击三维损伤模型,采用修正的复合材料应力-应变关系及考虑应变率效应的层内层间损伤模型,模拟结果与实验数据拟合程度较好。

    本文以碳纤维-玻璃纤维混杂复合材料为研究对象,分析混杂结构和冲击面纤维种类对低速冲击性能的影响。采用商业有限元软件ABAQUS建立了层间和层内两类混杂复合材料低速冲击模型,层内混杂复合材料采用纱线尺度模型。编写VUMAT子程序定义指数型渐进损伤因子及刚度退化方案,考虑纤维断裂、基体开裂、分层等损伤,通过分析实验数据及损伤形貌,揭示了碳纤维-玻璃纤维混杂复合材料低速冲击损伤破坏机制。

    单向经编织物(NCF)采用碳纤维(CF,TORAY T620SC-24K-50C)和玻璃纤维(GF,CPIC ECT469L-2400)制成,包括纯CF和纯GF的NCF织物及两种层内混杂织物,织物规格如表1所示,其中CF-GF和CF-CF-GF-GF为层内混杂织物,织物结构示意图如图1所示。环氧树脂,型号为2511-1A/BS风电叶片真空灌注专用树脂,主剂与固化剂质量比为100∶30,上纬(天津)公司。

    表  1  碳纤维-玻璃纤维(CF-GF)单向经编织物(NCF)规格
    Table  1.  Specifications of carbon fiber-glass fiber (CF-GF) non-crimp fabric (NCF)
    Fabric typeAreal density/(g·m−2)Mass ratio of CF to GF
    CFGF
    CF 728.3 0 1∶0
    GF 0 944.9 0∶1
    CF-GF 364.2 472.4 1∶1
    CF-CF-GF-GF 364.2 472.4 1∶1
    下载: 导出CSV 
    | 显示表格
    图  1  CF-GF层内混杂织物结构示意图
    Figure  1.  Schematic structure of CF-GF intralayer hybrid NCF fabrics

    本文设计层间和层内两类混杂结构,层内混杂层合板由CF-GF和CF-CF-GF-GF两种层内混杂织物铺层而成。各层合板的CF-GF混杂比均为1∶1,铺层方式为(0°/90°)4S,共8层,根据混杂结构及冲击面纤维种类进行命名,如表2所示,其中S-C和S-G采用夹芯式层间铺层形式。采用真空辅助树脂传递模塑(VARTM)工艺成型,固化条件为80℃、8 h。

    表  2  CF-GF混杂复合材料层合板铺层结构
    Table  2.  Stacking configurations of CF-GF hybrid composite laminates
    Hybrid structureStacking sequenceNomenclature
    Non-hybrid (CFCFCFCF)2s C
    (GFGFGFGF)2s G
    Interply-hybrid (CFGFCFGF)2s I-C
    (GFCFGFCF)2s I-G
    Sandwich-hybrid (CFCFGFGF)2s S-C
    (GFGFCFCF)2s S-G
    Intralayer-hybrid (CF-GF) fabric CN-1
    (CF-CF-GF-GF) fabric CN-2
    下载: 导出CSV 
    | 显示表格

    按照ASTM D7136M—05[18],采用INSTRON-9250HV落锤试验机进行低速冲击实验,通过改变冲击速度控制冲击能量,设置两个冲击能量分别为30 J和50 J,试样尺寸为100 mm×150 mm×6 mm,每组测试5个试样。利用NAUT21空气耦合式超声波C扫监测复合材料冲击后分层损伤,采用Bruker SkyScan1072进行Micro-CT测试,观察内部损伤形貌。

    Hashin失效准则被广泛应用于分析预测复合材料损伤破坏[19],但复合材料在损伤过程中冲击点附近的应力变化剧烈,应力形式的Hashin失效准则无法准确描述材料破坏过程,而应变在冲击过程中的变化较为平缓,更适合作为复合材料的失效判据。因此,本文采用基于应变形式的Hashin失效准则[20],具体表达式如下:

    纤维拉伸断裂 (ε11):

    {e}_{\rm{f}}^{\rm{t}}={\left(\frac{{\varepsilon }_{11}}{{\varepsilon }_{11}^{\rm{T}}}\right)}^{2}+{\left(\frac{{\varepsilon }_{12}}{{\tau }_{12}}\right)}^{2}+{\left(\frac{{\varepsilon }_{13}}{{\tau }_{13}}\right)}^{2}\geqslant 1 (1)

    纤维压缩断裂 ({\varepsilon }_{11}\leqslant 0):

    {e}_{\rm{f}}^{\rm{c}}={\left(\frac{{\varepsilon }_{11}}{{\varepsilon }_{11}^{\rm{C}}}\right)}^{2}\geqslant 1 (2)

    基体拉伸断裂({\varepsilon }_{22}\geqslant 0):

    {e}_{\rm{m}}^{\rm{t}}={\left(\frac{{\varepsilon }_{22}}{{\varepsilon }_{22}^{\rm{T}}}\right)}^{2}+{\left(\frac{{\varepsilon }_{12}}{{\tau }_{12}}\right)}^{2}+{\left(\frac{{\varepsilon }_{23}}{{\tau }_{23}}\right)}^{2}\geqslant 1 (3)

    基体压缩断裂({\varepsilon }_{22}\leqslant 0):

    \begin{split} e_{\rm{m}}^{\rm{c}} = &{\left( {\frac{{{E_{22}}{\varepsilon _{22}}}}{{2{G_{12}}{\gamma _{12}}}}} \right)^2} + {\left( {\frac{{{\varepsilon _{22}}}}{{\varepsilon _{22}^{\rm{T}}}}} \right)^2}\left[ {\left( {{{\left( {\frac{{{E_{22}}\varepsilon _{22}^{\rm{C}}}}{{2{G_{12}}{\tau _{12}}}}} \right)}^2} - 1} \right)} \right] + \\& {\left( {\frac{{{\varepsilon _{12}}}}{{{\tau _{12}}}}} \right)^2} + {\left( {\frac{{{\varepsilon _{13}}}}{{{\tau _{13}}}}} \right)^2} \geqslant 1 \end{split} (4)

    式中:EG分别为材料的杨氏模量和剪切模量; {\varepsilon }_{11} {\varepsilon }_{22} 为单元材料主方向的应变分量; {\varepsilon }_{12} {\varepsilon }_{13} {\varepsilon }_{23} 为单元材料主方向的剪切应变分量;{\varepsilon }_{{{i}}{{i}}}^{\rm{T}}{\varepsilon }_{{{i}}{{i}}}^{\rm{C}}分别为 i 方向对应的拉伸和压缩强度的失效应变;{\tau }_{{{i}}{{j}}}为单元剪切强度对应的剪切失效应变。当某单元内应变分量满足上述某一条件时,即认为该单元发生损伤。失效应变与材料强度之间的关系如下:

    \begin{split} &{X_{\rm{T}}} = {E_{11}}\varepsilon _{11}^{\rm{T}},{X_{\rm{C}}} = {E_{11}}\varepsilon _{11}^{\rm{C}},{Y_{\rm{T}}} = {E_{22}}\varepsilon _{22}^{\rm{T}},\\ &{Y_{\rm{C}}} = {E_{22}}\varepsilon _{22}^{\rm{C}},{Z_{\rm{T}}} = {E_{33}}\varepsilon _{33}^{\rm{T}},{S_{12}} = {G_{12}}{\tau _{12}},\\ &{S_{13}} = {G_{13}}{\tau _{13}},{S_{23}} = {G_{23}}{\tau _{23}} \end{split} (5)

    式中, {X}_{\rm{T}} X_{\rm{C}} Y_{\rm{T}} Y_{\rm{C}}{S}_{{{i}}{{j}}}分别为层合板轴向拉伸、轴向压缩、横向拉伸、横向压缩和各方向的剪切强度。相关材料属性如表3表4所示。

    表  3  用于数值模拟的CF/2511-1A/BS环氧树脂复合材料和GF/2511-1A/BS环氧树脂复合材料弹性参数
    Table  3.  Elastic parameters of CF/2511-1A/BS epoxy composites and GF/2511-1A/BS epoxy composites used in numerical simulation
    MaterialE11/GPaE22=E33/GPaG12=G13/GPaG23/GPa {\mu }_{12} {\mu }_{13} {\mu }_{23} {G}_{{\rm{f}}}/(kJ·m−2){G}_{{\rm{m}}}/(kJ·m−2)
    CF/epoxy 110 8.3 4.6 3.4 0.303 0.303 0.38 80 1
    GF/epoxy 40 8.4 4.3 3.2 0.315 0.315 0.39 65 1
    Notes: E11, E22, E33—Elastic modulus (direction 11, 22, 33); G12, G13, G23—Shear modulus (direction 12, 13, 23); {\mu }_{12} , {\mu }_{13} , {\mu }_{23} —Poisson’s ratio (direction 12, 13 and 23).
    下载: 导出CSV 
    | 显示表格
    表  4  用于数值模拟的CF/2511-1A/BS环氧树脂复合材料和GF/2511-1A/BS环氧树脂复合材料的强度参数
    Table  4.  Strength parameters of CF/2511-1A/BS epoxy composites and GF/2511-1A/BS epoxy composites used in numerical simulation MPa
    MaterialXTXCYT=ZTYC=ZCS12=S13S23
    CF/epoxy 1600 640 48 150 80 60
    GF/epoxy 860 550 48 140 65 60
    下载: 导出CSV 
    | 显示表格

    单元产生损伤后需进行材料性能退化,即刚度折减,本文引入指数形式的损伤状态变量d定义渐进损伤刚度折减方案。相比于参数型损伤变量将材料宏观属性直接折减,指数型损伤变量更接近实际情况且损伤过程连续[21]。将Hashin准则中的失效因子( {e}_{\rm{f}} {e}_{\rm{m}} )与损伤变量( {d}_{\rm{f}} {d}_{\rm{m}} )相关联,具体形式如下:[22]

    \begin{array}{l} {d_{\rm{f}}} = 1 - \dfrac{1}{{\sqrt {{e_{\rm{f}}}} }}{{\rm{e}}^{\left( { - {E_{11}}{{\left( {\varepsilon _{11}^{{{{\rm{f}}i}}}} \right)}^2}\left( {\sqrt {{e_{\rm{f}}}} - 1} \right){L^{\rm{c}}}/{G_{\rm{f}}}} \right)}}\\ {d_{\rm{m}}} = 1 - \dfrac{1}{{\sqrt {{e_{\rm{m}}}} }}{{\rm{e}}^{\left( { - {E_{22}}{{\left( {\varepsilon _{22}^{{{{\rm{m}}i}}}} \right)}^2}\left( {\sqrt {{e_{\rm{m}}}} - 1} \right){L^{\rm{c}}}/{G_{\rm{f}}}} \right)}} \end{array} (6)

    式中: {G}_{\rm{f}} {G}_{\rm{m}} 分别为材料纤维纵向和横向断裂韧性; {L}^{\rm{c}} 为单元特征长度,加入 {L}^{\rm{c}} 可降低网格密度对结果精度的影响; i 根据单元受拉或受压分别赋值为 T C 。本文采用的刚度退化方案如下:

    \begin{split} &{C}_{11}^{{\rm{d}}}=\left(1-{d}_{\rm{f}}\right){C}_{11} \\ &{C}_{22}^{{\rm{d}}}=\left(1-{d}_{\rm{f}}\right){\left(1-{d}_{\rm{m}}\right)C}_{22} \\ &{C}_{33}^{{\rm{d}}}=\left(1-{d}_{\rm{f}}\right){\left(1-{d}_{\rm{m}}\right)C}_{33} \\ &{C}_{12}^{{\rm{d}}}=\left(1-{d}_{\rm{f}}\right){\left(1-{d}_{\rm{m}}\right)C}_{12} \\ &{C}_{23}^{{\rm{d}}}=\left(1-{d}_{\rm{f}}\right){\left(1-{d}_{\rm{m}}\right)C}_{23} \\ &{C}_{13}^{{\rm{d}}}=\left(1-{d}_{\rm{f}}\right){\left(1-{d}_{\rm{m}}\right)C}_{13} \end{split} (7)

    采用双线性内聚力单元(Cohesive element)模拟相邻子层界面的分层损伤[23]。采用二次应力损伤准则(Quads)定义损伤起始,损伤演化采用B-K (Benzeggaph-Kenane)准则,分别如下:

    {\left(\frac{{t}_{{\rm{n}}}}{N}\right)}^{2}+{\left(\frac{{t}_{{\rm{s}}}}{S}\right)}^{2}+{\left(\frac{{t}_{\rm{t}}}{T}\right)}^{2}=1 (8)
    {G}^{\rm{C}}\geqslant {G}_{{\rm{n}}}^{\rm{C}}+\left({G}_{{\rm{S}}}^{\rm{C}}-{G}_{{\rm{n}}}^{\rm{C}}\right){\left(\frac{{G}_{{\rm{s}}}}{{G}_{\rm{T}}}\right)}^{\eta } (9)

    式中: {t}_{{\rm{n}}} {t}_{{\rm{s}}} {t}_{\rm{t}} 分别为界面法向应力和两个剪切应力;NST对应界面法向和两个剪切强度; {G}_{{\rm{n}}}^{\rm{C}} {G}_{{\rm{S}}}^{\rm{C}} 分别为法向和切向临界应变能释放率; {G}_{{\rm{s}}} {G}_{{\rm{n}}} 分别为 {t}_{{\rm{s}}} {t}_{{\rm{n}}} 对应的能量释放率。相关材料属性如表5所示。

    表  5  CF/2511-1A/BS环氧树脂复合材料和GF/2511-1A/BS环氧树脂复合材料的层间界面参数
    Table  5.  Material properties of interface cohesive elements for CF/2511-1A/BS epoxy composites and GF/2511-1A/BS epoxy composites
    ρ/(kg·m−3)kN/(GPa·mm−1)kS=kT/(GPa·mm−1)N/MPaS=T/MPa G_{\rm{n}}^{\rm{C}}/(J·m−2) G_{\rm{S}}^{\rm{C}}/(J·m−2)η
    1200 15 1.2 30 60 0.28 0.8 1.5
    下载: 导出CSV 
    | 显示表格

    图2为层间及夹芯混杂复合材料低速冲击模型,层合板采用沙漏增强模式的减缩积分单元C3D8R,共8层,单层尺寸为150 mm×100 mm×0.75 mm,定义X轴为纤维方向,Y轴为基体方向,通过改变每层材料属性实现相应的混杂结构。界面为0厚度的COH3D8内聚力单元,共7层。夹具是内径为120 mm、宽为10 mm的圆环,冲头是直径为12.6 mm的半球形锤头,夹具和冲头定义为刚体,采用R3D4单元。细化层合板冲击区域网格,提高模拟精准度。

    图  2  CF-GF层间及夹芯混杂增强环氧树脂复合材料低速冲击模型
    Figure  2.  Low velocity impact model of CF-GF interlayer and sandwich hybrid reinforced epoxy composites

    层内混杂复合材料采用纱线尺度模型,层合板、夹具和冲头尺寸与层间模型一致,如图3(a)所示。模型假设树脂对纤维完全浸润,复合材料中纱线系统以纤维束增强树脂的复合形式存在,纤维与树脂为一整体[24],单根纱线横截面尺寸为5 mm×0.75 mm,如图3(b)所示,通过改变每根纤维束材料属性,实现CN-1及CN-2混杂结构,复合材料的基体部分由布尔运算得到,如图3(c)所示。采用金相显微镜观察纤维分布情况如图4(a)图4(b)所示,测得CF体积分数为68vol%,GF体积分数为70vol%,在ABAQUS中建立四边形RUC (Representative unit cell)单元[25],如图4(c)所示,计算纤维束增强树脂弹性参数,相关属性如表6表7所示。

    图  3  CF-GF层内混杂增强环氧树脂复合材料低速冲击模型
    Figure  3.  Low velocity impact model of CF-GF intralayer hybrid reinforced epoxy composite
    图  4  CF-GF层内混杂增强环氧树脂复合材料RUC模型
    Figure  4.  RUC model of CF-GF intralayer hybrid reinforced epoxy composite
    表  6  CF-GF层内混杂增强环氧树脂复合材料模型中CF、GF和2511-1A/BS环氧树脂的材料参数
    Table  6.  Material paramenters of CF, GF and 2511-1A/BS epoxy for CF-GF intralayer hybrid reinforced epoxy composite model
    MaterialE11/GPaE22=E33/GPaG12=G13/GPaG23/GPa {\mu }_{12} {\mu }_{13} {\mu }_{23} \rho /(kg·m−3)
    CF 234 20 9.2 7.4 0.3 0.3 0.34 1.77
    GF 78.7 7 4.0 2.5 0.3 0.3 0.4 2.54
    2511-1A/BS epoxy 3.1 0.3 1.13
    下载: 导出CSV 
    | 显示表格
    表  7  CF-GF层内混杂增强环氧树脂复合材料模型中CF和GF纤维束的力学性能
    Table  7.  Mechanical properties of CF and GF fiber bundle for CF-GF intralayer hybrid reinforced epoxy composite model
    MaterialE11/GPaE22=E33/GPaG12=G13/GPaG23/GPaμ12μ13μ23
    CF fiber bundle 153 8.70 3.60 3.20 0.3 0.3 0.36
    GF fiber bundle 52 5.27 2.48 1.88 0.3 0.3 0.40
    下载: 导出CSV 
    | 显示表格

    极限载荷和吸收能量是表征低速冲击性能的主要数据。图5为CF-GF混杂增强环氧树脂复合材料的极限载荷和吸收能量。可以发现,不同能量下CF-GF混杂增强环氧树脂复合材料的极限载荷不同,CF-GF混杂增强环氧树脂复合材料50 J冲击能量的极限载荷较30 J冲击能量下更高,这是由于在同样配比下,较大的冲击能量对应更快的冲击速度,撞击时的应变率效应更明显[26]。其中,G结构抗冲击性能最弱,S-C结构吸收能量较大,I-C和CN-1结构极限载荷较高。随着能量的增加,极限载荷和吸收能量均增大,混杂结构可提高极限载荷和吸收能量。冲击面为CF时,极限载荷和吸收能量均较高。I-C结构极限载荷最高,相较于G结构提高了24%。I-G和S-G结构的极限载荷相差不大,均较小。两种层内混杂结构呈现出较高的极限载荷,相较于G结构提高了20%左右。冲击面纤维种类相同时,夹芯(S-C和S-G)结构的吸收能量大于层间混杂(I-C和I-G)结构。相同混杂结构中,冲击面为CF时吸收能量较大,S-C结构的吸收能量较C结构和G结构分别提高了10%和16%。CN-2结构的吸收能量大于CN-1结构,与面内混杂界面的分布有关系[27]

    图  5  CF-GF混杂增强环氧树脂复合材料的极限载荷和吸收能量
    Figure  5.  Maximum force and absorbed energy of CF-GF hybrid reinforced epoxy composites

    图6为30 J能量冲击下C结构、I-C结构、S-G结构和CN-1结构的CF-GF混杂增强环氧树脂复合材料时间-载荷和时间-能量曲线。可知,极限载荷模拟结果略大于实验值,能量模拟数据略低。实验曲线随时间变化趋势与模拟曲线结果拟合度较高。

    图  6  30 J能量冲击下C、I-C、S-G、CN-1的CF-GF混杂增强环氧树脂复合材料实验与数值模拟时间-载荷及时间-能量对比曲线
    Figure  6.  Comparison of experiment and simulation numerical results on time-force and time-energy curves of CF-GF hybrid reinforced epoxy composites of C, I-C, S-G, CN-1 after 30 J impact

    图7为50 J能量冲击后CF-GF混杂增强环氧树脂复合材料C扫描及分层失效模拟(SDEG)结果。图8为50 J能量冲击后CF-GF混杂增强环氧树脂复合材料的分层损伤面积。图9为CF-GF混杂增强环氧树脂复合材料目视及模拟冲击面纤维损伤结果(SDV1)。图10为CF-GF混杂增强环氧树脂复合材料冲击背面基体目视损伤及数值模拟结果(SDV2)。可知,模拟结果与实验损伤形貌较一致,冲击面为CF (C、I-C、S-C)时,分层面积为菱形,纤维损伤沿Y方向,I-C结构背部基体损伤较少,S-C结构背部基体损伤区域较大且分层面积最大。冲击面为GF (G、I-G、S-G)时,分层面积接近椭圆形,纤维损伤集中于冲击点下方,冲击面损伤呈圆圈状,冲击背面表现为菱形损伤,I-G结构与S-G结构背面基体破坏形貌类似,I-G结构分层面积最小。层内混杂结构的冲击面纤维损伤形貌与C结构类似,但面内损伤传播连续性较低,CF纤维束内SDV1损伤较GF纤维束集中,且沿X轴有横向扩散,在远离冲击点处仍可观察到部分CF纤维束内SDV1失效,而相邻GF纤维束未出现破坏。SDV2损伤由冲击点正下方向四周扩散,经混杂界面后损伤程度明显降低,大多数损伤发生在CF纤维束内,说明CF纤维束对相邻的GF纤维束有保护作用。CN-1结构的纤维损伤较CN-2结构低,纤维束内基体损伤较CN-2高,混杂界面对面内损伤的抑制作用在CN-1结构中更明显。层内混杂结构的树脂损伤由冲击点向下扩展,应力分布呈菱形,底部断裂沿Y方向。30 J能量冲击后损伤形貌与其类似,不再赘述。

    图  7  50 J能量冲击后CF-GF混杂增强环氧树脂复合材料C扫描及模拟(SDEG)分层损伤
    Figure  7.  C-scan and simulation (SDEG) of delamination damage of CF-GF hybrid reinforced epoxy composites after 50 J impact
    图  8  50 J能量冲击后CF-GF混杂增强环氧树脂复合材料的分层损伤面积
    Figure  8.  Delamination damage area of CF-GF hybrid reinforced epoxy composites after 50 J impact
    图  9  50 J能量冲击后CF-GF混杂增强环氧树脂复合材料表面纤维目视及模拟(SDV1)破坏形貌
    Figure  9.  Visual and simulation (SDV1) of surface fiber damage of CF-GF hybrid reinforced epoxy composites after 50 J impact
    图  10  50 J能量冲击后CF-GF混杂增强环氧树脂复合材料表面基体目视及模拟(SDV2)破坏形貌
    Figure  10.  Visual and simulation (SDV2) of surface matrix damage of CF-GF hybrid reinforced epoxy composites after 50 J impact

    前期已对30 J能量冲击下C结构、G结构、I-C结构和S-C结构的CF-GF混杂增强环氧树脂复合材料内部损伤进行了分析[28]图11为30 J能量冲击后I-G、S-G、CN-1、CN-2的CF-GF混杂增强环氧树脂复合材料Micro-CT扫描横截面损伤。可知,冲击方向沿Z轴向下,白色区域为GF层,黑色区域为CF层。I-G结构和S-G结构冲击区域形变不明显,这是由于GF韧性大,变形恢复性好。I-G结构冲击点附近及内部GF层出现纤维断裂损伤,CF层未观察到破坏。S-G结构上部及内部界面有分层损伤,冲击面GF纵向脆断明显,内部CF层损伤较少。CN-1结构中纤维损伤由冲击点向下传播,底部有少量分层。CN-2结构中冲击面GF受剪切力,损伤范围广,复合材料底部观察到分层损伤。

    图  11  30 J能量冲击后I-G、S-G、CN-1、CN-2的CF-GF混杂增强环氧树脂复合材料Micro-CT扫描横截面损伤
    Figure  11.  Micro-CT results of cross-section damage of CF-GF hybrid reinforced epoxy composites of I-G, S-G, CN-1, CN-2 after 30 J impact

    图12为不同时刻I-C和CN-1的CF-GF混杂增强环氧树脂复合材料纤维损伤(SDV1)情况。图13为不同时刻I-C和CN-1的CF-GF混杂增强环氧树脂复合材料基体损伤(SDV2)情况。可知,I-C结构显示横截面损伤,CN-1结构显示冲击面纤维损伤及冲击背面基体损伤。纤维损伤程度小于基体损伤,基体损伤首先出现在冲击点周围及复合材料背部,冲头达到最低位置时,底部界面有明显分层破坏。I-C结构的失效过程与CN-1结构有区别,I-C结构中纤维损伤主要集中在冲击面CF层及内部GF层,CN-1结构中CF束首先出现破坏,损伤方向沿Y轴,大多数损伤被限制在混杂界面之间。随着冲头下移,纤维损伤沿X轴增加,且GF纤维束内开始出现纤维破坏,CF纤维束中基体破坏呈三角形,沿X轴损伤严重,GF纤维束内损伤较少,部分CF纤维束在远离冲击点区域仍有损伤,而临近的GF纤维束内基体损伤较少。

    图  12  不同时刻I-C和CN-1的CF-GF混杂增强环氧树脂复合材料纤维损伤(SDV1)情况
    Figure  12.  Fiber damage (SDV1) condition of CF-GF hybrid reinforced epoxy composites of I-C and CN-1 at different time
    图  13  不同时刻I-C和CN-1的CF-GF混杂增强环氧树脂复合材料基体损伤(SDV2)情况
    Figure  13.  Matrix damage (SDV2) condition of CF-GF hybrid reinforced epoxy composites of I-C and CN-1 at different time

    (1)相同混杂比条件下,碳纤维-玻璃纤维层间混杂增强环氧树脂复合材料抗冲击性能较好,I-C结构极限载荷较大,S-C结构吸收能量较多。I-G结构和S-G结构对冲击响应区别不明显,抗冲击性能差别不大。CN-1结构比CN-2结构具有更高的极限载荷,CN-2结构的损伤容限较高。

    (2)混杂结构可有效降低冲击损伤,I-C结构和CN-1结构内部的纤维及基体损伤程度较其他混杂结构低,夹芯(S-C、S-G)结构表现出明显的分层损伤,其中S-C结构和CN-2结构分层损伤面积较大。CN-1结构的冲击面纤维损伤较CN-2结构轻,冲击背面基体损伤较CN-2结构严重。

    (3)层间混杂结构抗冲击性能受混杂界面数量影响,其中玻璃纤维层形变恢复性高而损伤较大,碳纤维层形变量小且损伤较低。层内混杂结构面内损伤具有取向性,面内混杂界面对抑制损伤传播具有积极作用,损伤扩展连续性较层间混杂结构低,应力在碳纤维束内传播速度快且广,碳纤维束承担了大部分冲击损伤,临近玻璃纤维束内损伤较小。

  • 图  1   试验用材料

    Figure  1.   Materials for testing

    图  2   混凝土落锤抗弯冲击试验装置

    Figure  2.   Drop weight impact test device for concrete

    图  3   SF-PPF/RAC的抗冲击能力

    Figure  3.   Impact resistance contrast of SF-PPF/RAC

    图  4   SF-PPF/RAC的延性比和韧性系数

    Figure  4.   Ductility ratios and toughness coefficients of SF-PPF/RAC

    图  5   SF-PPF/RAC试件冲击破坏断裂面

    Figure  5.   Impact damage surfaces of SF-PPF/RAC specimens

    图  6   SF-PPF/RAC抗冲击破坏次数N2的Weibull分布线性拟合曲线

    Figure  6.   Linear regression curves of impact resistance number N2 in Weibull distribution of SF-PPF/RAC

    图  7   不同失效概率下SF-PPF/RAC冲击破坏次数N2与SF体积分数的关系曲线

    Figure  7.   Relation curves between impact number N2 and SF volume fraction of SF-PPF/RAC under different failure probabilities

    图  8   不同失效概率下SF-PPF/RAC冲击破坏次数N2与PPF体积分数的关系曲线

    Figure  8.   Relation curves between impact number N2 and PPF volume fraction of SF-PPF/RAC under different failure probabilities

    图  9   SF-PPF/RAC抗冲击性能的混杂增强效应

    Figure  9.   Hybrid enhancement effect of impact resistance of SF-PPF/RAC

    图  10   SF-PPF/RAC试件冲击破坏形态

    Figure  10.   Impact failure forms of SF-PPF/RAC specimens

    图  11   SF-PPF/RAC的阻裂机制模型

    Figure  11.   Crack resistance model of SF-PPF/RAC

    图  12   SF-PPF/RAC试件破坏断面的裂缝

    Figure  12.   Crack on fracture surface of SF-PPF/RAC

    表  1   再生粗骨料的物理性能

    Table  1   Physical properties of recycle coarse aggregate

    Size/mmApparent density/(kg·m–3)Bulk density/(kg·m–3)Crushing index/%Water absorption/%Mud content/%
    5–202 6401 46017.13.40.2
    下载: 导出CSV

    表  2   钢纤维(SF)和聚丙烯纤维(PPF)的物理性能

    Table  2   Physical properties of steel fiber(SF) and polypropylene fiber(PPF)

    Fiber typeLength/mmAspect rationDensity/(g·cm−3)Tensile strength/MPaElastic modulus/GPa
    SF 30 60 7.8 ≥800 210
    PPF 12 343 0.91 ≥350 3.5
    下载: 导出CSV

    表  3   SF-PPF/再生混凝土(RAC)试件编号和配合比设计

    Table  3   Specimen codes and mix design of SF-PPF/recycled aggregate concrete(RAC)

    No.NotationCement/
    (kg·m−3)
    Sand/
    (kg·m−3)
    Water/
    (kg·m−3)
    Aggregate/
    (kg·m−3)
    Water reducer/
    (kg·m−3)
    SF/vol%PPF/vol%
    RC1 RAC 540 618 190 1 052 2.16
    RC2 SF0.5/RAC 540 618 190 1 052 2.16 0.5
    RC3 SF1.0/RAC 540 618 190 1 052 2.16 1.0
    RC4 SF1.5/RAC 540 618 190 1 052 2.16 1.5
    RC5 PPF0.6/RAC 540 618 190 1 052 2.16 0.6
    RC6 PPF0.9/RAC 540 618 190 1 052 2.16 0.9
    RC7 PPF1.2/RAC 540 618 190 1 052 2.16 1.2
    RC8 SF0.5-PPF0.6/RAC 540 618 190 1 052 2.16 0.5 0.6
    RC9 SF0.5-PPF0.9/RAC 540 618 190 1 052 2.16 0.5 0.9
    RC10 SF0.5-PPF1.2/RAC 540 618 190 1 052 2.16 0.5 1.2
    RC11 SF1.0-PPF0.6/RAC 540 618 190 1 052 2.16 1.0 0.6
    RC12 SF1.0-PPF0.9/RAC 540 618 190 1 052 2.16 1.0 0.9
    RC13 SF1.0-PPF1.2/RAC 540 618 190 1 052 2.16 1.0 1.2
    RC14 SF1.5-PPF0.6/RAC 540 618 190 1 052 2.16 1.5 0.6
    RC15 SF1.5-PPF0.9/RAC 540 618 190 1 052 2.16 1.5 0.9
    RC16 SF1.5-PPF1.2/RAC 540 618 190 1 052 2.16 1.5 1.2
    下载: 导出CSV

    表  4   SF-PPF/RAC的抗压强度和抗冲击试验结果

    Table  4   Test results of compressive strength and impact resistance of SF-PPF/RAC

    No.Notationfcu/MPaSpecimen numberAverage valueImpact energy/JCμ
    123456
    N1/N2N1/ N2N1/ N2N1/ N2N1/ N2N1/ N2N1/ N2N1/ N2
    RC1 RAC 49.2 2/3 2/3 3/4 3/4 4/5 4/6 3/4 26.5/35.3
    RC2 SF0.5/RAC 55.2 3/12 3/16 4/18 4/21 5/18 6/23 4/18 35.3/158.8 4.5 3.5
    RC3 SF1.0RAC 58.4 4/42 4/54 5/51 5/58 6/63 6/74 5/57 44.1/502.7 14.3 10.4
    RC4 SF1.5/RAC 60.6 5/62 6/75 7/79 7/92 8/85 8/105 7/83 61.7/723.1 20.8 10.9
    RC5 PPF0.6/RAC 48.1 2/8 3/11 3/12 4/13 4/19 5/15 4/13 35.3/114.7 3.3 2.3
    RC6 PPF0.9/RAC 47.2 3/9 3/12 4/14 5/15 5/17 6/23 4/15 35.3/132.3 3.8 2.8
    RC7 PPF1.2/RAC 46.9 3/14 4/15 5/21 5/25 6/24 6/29 5/21 44.1/185.2 5.3 3.2
    RC8 SF0.5-PPF0.6/RAC 54.1 3/16 3/24 4/17 4/32 5/26 5/41 4/26 35.3/229.3 6.5 5.5
    RC9 SF0.5-PPF0.9/RAC 52.7 3/29 3/35 4/39 5/37 7/41 7/51 5/37 44.1/326.3 9.3 6.4
    RC10 SF0.5-PPF1.2/RAC 50.8 3/43 4/45 4/51 5/54 6/63 8/68 5/54 44.1/476.3 13.5 9.8
    RC11 SF1.0-PPF0.6/RAC 56.2 4/64 6/86 6/104 7/94 7/107 8/121 6/96 52.9/846.7 24.0 15.0
    RC12 SF1.0-PPF0.9/RAC 50.4 4/93 5/105 6/108 7/116 7/127 9/144 6/115 52.9/1 014.3 28.8 18.2
    RC13 SF1.0-PPF1.2/RAC 47.8 5/137 6/167 7/156 7/185 8/174 12/215 8/172 70.6/1 517.0 43.0 20.5
    RC14 SF1.5-PPF0.6/RAC 57.4 5/184 8/136 8/162 9/189 11/207 13/236 9/186 79.4/1 640.5 46.5 19.7
    RC15 SF1.5-PPF0.9/RAC 45.2 6/188 8/225 10/248 11/236 13/256 15/275 11/238 97.0/2 099.2 59.5 20.6
    RC16 SF1.5-PPF1.2/RAC 44.2 5/114 7/176 8/195 9/215 13/257 15/225 10/197 88.2/1 737.5 49.3 18.7
    Notes: fcu—Cube compressive strength at age of 28d; C—Toughness coefficient; μ—Ductility ratio. N1, N2—Impact number.
    下载: 导出CSV

    表  5   SF-PPF/RAC抗冲击次数的Weibull分布线性回归分析结果

    Table  5   Results of linear regression in Weibull distribution for impact resistance numbers of SF-PPF/RAC

    NumberNotationRegression coefficient αRegression coefficient βCorrelation coefficient R2
    N1N2N1N2N1N2
    RC1 RAC 3.179 3.612 3.869 5.540 0.841 0.851
    RC2 SF0.5/RAC 3.612 4.579 5.540 13.641 0.852 0.961
    RC3 SF1.0RAC 5.447 5.434 9.194 22.385 0.839 0.969
    RC4 SF1.5/RAC 5.710 5.820 11.399 26.138 0.942 0.979
    RC5 PPF0.6/RAC 3.230 3.576 4.416 9.548 0.943 0.966
    RC6 PPF0.9/RAC 3.476 3.286 5.479 9.262 0.870 0.961
    RC7 PPF1.2/RAC 3.878 3.504 6.504 11.104 0.976 0.919
    RC8 SF0.5-PPF0.6/RAC 4.322 2.823 6.399 9.546 0.840 0.913
    RC9 SF0.5-PPF0.9/RAC 2.571 5.505 4.393 20.541 0.843 0.920
    RC10 SF0.5-PPF1.2/RAC 2.954 5.634 5.104 22.898 0.913 0.909
    RC11 SF1.0-PPF0.6/RAC 4.222 4.708 8.201 21.900 0.895 0.965
    RC12 SF1.0-PPF0.9/RAC 3.672 6.726 7.157 32.376 0.971 0.934
    RC13 SF1.0-PPF1.2/RAC 3.777 6.879 7.910 35.866 0.885 0.949
    RC14 SF1.5-PPF0.6/RAC 3.156 2.822 7.301 14.833 0.942 0.967
    RC15 SF1.5-PPF0.9/RAC 3.182 7.957 7.845 43.985 0.996 0.967
    RC16 SF1.5-PPF1.2/RAC 2.573 3.632 6.119 19.469 0.954 0.931
    下载: 导出CSV

    表  6   不同失效概率下SF-PPF/RAC的抗冲击次数

    Table  6   Impact resistance numbers of SF-PPF/RAC under different failure probabilities

    NumberNotationFailure probability Pr
    5%15%30%
    N1N2N1N2N1N2
    RC1 RAC 1 2 2 3 2 4
    RC2 SF0.5/RAC 2 10 3 13 4 16
    RC3 SF1.0RAC 3 36 4 44 5 51
    RC4 SF1.5/RAC 4 54 5 65 6 75
    RC5 PPF0.6/RAC 2 6 2 9 3 11
    RC6 PPF0.9/RAC 2 7 3 10 4 12
    RC7 PPF1.2/RAC 3 10 3 14 4 18
    RC8 SF0.5-PPF0.6/RAC 2 10 3 16 4 20
    RC9 SF0.5-PPF0.9/RAC 2 24 3 30 4 35
    RC10 SF0.5-PPF1.2/RAC 2 34 3 42 4 49
    RC11 SF1.0-PPF0.6/RAC 4 56 5 71 6 84
    RC12 SF1.0-PPF0.9/RAC 3 79 4 94 5 106
    RC13 SF1.0-PPF1.2/RAC 4 119 5 141 6 158
    RC14 SF1.5-PPF0.6/RAC 4 67 6 101 7 133
    RC15 SF1.5-PPF0.9/RAC 5 173 7 200 9 221
    RC16 SF1.5-PPF1.2/RAC 3 94 5 129 7 160
    下载: 导出CSV
  • [1]

    BEHERA M, BHATTACHARYYA S K, MINOCHA A K, et al. Recycled aggregate from C&D waste & its use in concrete-A breakthrough towards sustainability in construction sector: A review[J]. Construction and Building Materials,2014,68:501-516. DOI: 10.1016/j.conbuildmat.2014.07.003

    [2]

    KHOURY E, CAZACLIU B, REMOND S. Impact of the initial moisture level and pre-wetting history of recycled concrete aggregates on their water absorption[J]. Materials and Structures,2017,50(5):229. DOI: 10.1617/s11527-017-1093-8

    [3] 史才军, 曹芷杰, 谢昭彬. 再生混凝土力学性能的研究进展[J]. 材料导报, 2016, 30(23):96-103.

    SHI Caijun, CAO Zhijie, XIE Zhaobin. Research progress in the mechanical properties of recycled aggregate concrete[J]. Materials Review,2016,30(23):96-103(in Chinese).

    [4]

    XIE J H, HUANG L, GUO Y C, et al. Experimental study on the compressive and flexural behaviour of recycled aggregate concrete modified with silica fume and fibres[J]. Construction and Building Materials,2018,178:612-623.

    [5] 章文姣, 鲍成成, 孔祥清, 等. 混杂纤维掺量对再生混凝土力学性能的影响研究[J]. 科学技术与工程, 2016, 16(13):106-112. DOI: 10.3969/j.issn.1671-1815.2016.13.019

    ZHANG Wenjiao, BAO Chengcheng, KONG Xiangqing, et al. Experimental study on mechanical properties of hybrid fiber basic of recycled concrete[J]. Science Technology and Engineering,2016,16(13):106-112(in Chinese). DOI: 10.3969/j.issn.1671-1815.2016.13.019

    [6]

    NILI M, AFROUGHSABET V. The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete[J]. Construction & Building Materials,2010,24(6):927-933.

    [7] 王璞, 黄真, 周岱, 等. 碳纤维混杂纤维混凝土抗冲击性能研究[J]. 振动与冲击, 2012, 31(12):14-18.

    WANG Pu, HUANG Zhen, ZHOU Dai, et al. Impact mechanical properties of concrete reinforced with hybrid carbon fibers[J]. Journal of Vibration and Shock,2012,31(12):14-18(in Chinese).

    [8]

    HSIE M, TU C, SONG P S. Mechanical properties of polypropylene hybrid fiber-reinforced concrete[J]. Materials Science & Engineering A,2008,494(1-2):153-157.

    [9]

    OUYANG D, KONG L J, FU H, et al. Experimental investigations on mechanical properties and fire resistance of steel-polypropylene hybrid fiber reinforced concrete[J]. Advanced Materials Research,2013,772:182-187. DOI: 10.4028/www.scientific.net/AMR.772.182

    [10]

    CHEN B, LIU J. Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability[J]. Cement and Concrete Research,2005,35(5):913-917. DOI: 10.1016/j.cemconres.2004.07.035

    [11]

    TABATABAEIAN M, KHALOO A, JOSHAGHANI A, et al. Experimental investigation on effects of hybrid fibers on rheological, mechanical, and durability properties of high-strength SCC[J]. Construction and Building Materials,2017,147:497-509. DOI: 10.1016/j.conbuildmat.2017.04.181

    [12] 景嘉骅. 混杂纤维再生砖骨料混凝土试验及性能计算方法[D]. 郑州: 郑州大学, 2018.

    JING Jiahua. The experiment and performance calculation method of hybrid fibers reinforced recycled bricks aggregate concrete[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).

    [13]

    MESBAH H A, BUYLE-BODIN F. Efficiency of polypropylene and metallic fibres on control of shrinkage and cracking of recycled aggregate mortars[J]. Construction & Building Materials,1999,13(8):439-447.

    [14] 陈图真. 钢纤维和聚丙烯粗纤维改性再生混凝土力学性能试验研究[D]. 广州: 广东工业大学, 2015.

    CHEN Tuzhen. Experimental study on mechanical properties of steel fiber and macro polypropylene fiber reinforced recycled concrete[D]. Guangzhou: Guangdong University of Technology, 2015(in Chinese).

    [15]

    Amerian Concrete Institute. Measurement of properties of fiber reinforced concrete: ACI 544.2R—89[S]. Detroit: Amerian Concrete Institute, 1999.

    [16] 中国国家标准化管理委员会. 水泥混凝土和砂浆用合成纤维: GB/T 21120—2007[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People’s Republic of China. Synthetic fibres for cement concrete and mortar: GB/T 21120—2007[S]. Beijing: China Standards Press, 2007(in Chinese).

    [17] 潘慧敏, 马云朝. 钢纤维混凝土抗冲击性能及其阻裂增韧机理[J]. 建筑材料学报, 2017, 20(6):956-961. DOI: 10.3969/j.issn.1007-9629.2017.06.021

    PAN Huimin, MA Yunzhao. Impact resistance of steel fiber reinforced concrete and its mechanism crack resistance and toughening[J]. Journal of Building Structures,2017,20(6):956-961(in Chinese). DOI: 10.3969/j.issn.1007-9629.2017.06.021

    [18] 邓宗才, 薛会青, 刘爱军. 纤维素纤维及混杂纤维混凝土的抗弯冲击性能[J]. 北京工业大学学报, 2008, 34(11):1149-1153.

    DENG Zongcai, XUE Huiqing, LIU Aijun. Flexural impact behavior of cellulose and hybrid fiber reinforced concrete beams[J]. Journal of Beijing University of Technology,2008,34(11):1149-1153(in Chinese).

    [19] 陈相宇. 纤维混凝土抗冲击性能的试验研究[D]. 大连: 大连理工大学, 2010.

    CHEN Xiangyu. Experimental research on impact resistance of fibre reinforced concrete[D]. Dalian: Dalian University of Technology, 2010(in Chinese).

    [20] 李冬, 丁一宁. 钢筋与结构型合成纤维对混凝土抗冲击性能混杂效应的分析[J]. 振动与冲击, 2017, 36(2):123-128.

    LI Dong, DING Yining. Hybrid effect of steel rebar and polypropylene fiber on the impact resistance of concrete[J]. Journal of Vibration and Shock,2017,36(2):123-128(in Chinese).

    [21]

    ALI M A E M, SOLIMAN A M, NEHDI M L. Hybrid-fiber reinforced engineered cementitious composite under tensile and impact loading[J]. Materials & Design,2017,117:139-149.

    [22]

    GUPTA T, SHARMA R K, CHAUDHARY S. Impact resistance of concrete containing waste rubber fiber and silica fume[J]. International Journal of Impact Engineering,2015,83:76-87. DOI: 10.1016/j.ijimpeng.2015.05.002

    [23]

    LI J J, NIU J G, WAN C J, et al. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete[J]. Construction and Building Materials,2016,118:27-35. DOI: 10.1016/j.conbuildmat.2016.04.116

    [24] 欧祖敏, 孙璐. 冻融损伤混凝土的弯曲疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2017, 51(6):1074-1081, 1103. DOI: 10.3785/j.issn.1008-973X.2017.06.003

    OU Zumin, SUN Lu. Flxural fatigue-life reliability of frost-damaged concrete[J]. Journal of Zhejiang University (Engineering Science),2017,51(6):1074-1081, 1103(in Chinese). DOI: 10.3785/j.issn.1008-973X.2017.06.003

    [25] 石小平, 姚祖康, 李华, 等. 水泥混凝土的弯曲疲劳特性[J]. 土木工程学报, 1990, 23(3):11-22.

    SHI Xiaoping, YAO Zukang, LI Hua, et al. Study on flexural fatigue behavior of cement concrete[J]. China Civil Engineering Journal,1990,23(3):11-22(in Chinese).

    [26]

    WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Microelectron,1951,28(4):613-617.

    [27]

    SAGHAFI A, MIRHABILI A R, YARI G H. Improved linear regression method for estimating Weibull parameters[J]. Theoretical & Applied Fracture Mechanics,2009,52(3):180-182.

    [28]

    RAHMANI T, KIANI B, SHEKARCHI M, et al. Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test[J]. Construction & Building Materials,2012,37:360-369.

    [29] 赵庆新, 董进秋, 潘慧敏, 等. 玄武岩纤维增韧混凝土冲击性能[J]. 复合材料学报, 2010, 27(6):120-125.

    ZHAO Qingxin, DONG Jinqiu, PAN Huimin, et al. Impact behavior of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2010,27(6):120-125(in Chinese).

    [30]

    LI B, XU L H, SHI Y C, et al. Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete[J]. Construction and Building Materials,2018,181:474-486. DOI: 10.1016/j.conbuildmat.2018.06.065

图(12)  /  表(6)
计量
  • 文章访问数:  1027
  • HTML全文浏览量:  333
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-17
  • 录用日期:  2019-11-03
  • 网络出版日期:  2019-11-05
  • 刊出日期:  2020-07-14

目录

/

返回文章
返回