复合材料翼面壁板轴压稳定性

Stability of composite stiffened panels under compression

  • 摘要: 基于T型长桁铺层数不同的两块复合材料翼面加筋壁板试件SC-1和SC-2,开展轴压稳定性试验研究,并提出一种预测屈曲载荷及最小后屈曲承载能力的工程分析方法,结合有限元特征值屈曲分析方法、有限元弧长法对试件的屈曲载荷、屈曲模态及后屈曲承载能力进行分析。试验结果表明,铺层数较多的试件SC-1的蒙皮局部屈曲应变较高,壁板也具有更高的屈曲载荷。在后屈曲阶段,SC-2加载到试验屈曲载荷的2.4倍未发生材料破坏和长桁蒙皮间脱粘损伤。工程分析方法和特征值屈曲分析能够准确预测壁板的屈曲载荷,最大误差分别为-9.3%和-2.8%,工程分析得到SC-2的最小后屈曲承载能力为试验屈曲载荷的2.09倍。有限元弧长法分析得到两件试件的屈曲载荷误差均小于1%,并具有壁板轴压屈曲模态预测和变形跟踪能力。

     

    Abstract: Experiments for compression stability analysis were conducted on composite stiffened panels SC-1 and SC-2 with different T-stringer lay-ups. A proposed engineering method was introduced to predict the buckling load and the least post-buckling carrying capability, and finite element analysis with eigenvalue method and arc-length method were carried out to investigate the bucking load, buckling mode, and post-buckling carrying capability. Experiment results show that SC-1 with more stringer ply-ups possess the higher local bucking strain of skin and the higher buckling load of the panel, and SC-2 can sustain a post-buckling carrying capability of 2.4 times of buckling load without material damage and stringer-skin debonding. The engineering method and eigenvalue method acquire the buckling loads of the panels with errors of -9.3% and -2.8% respectively, and the minimum post-buckling carrying capability of SC-2 is 2.09 times of experimental buckling load by engineering method. The errors of buckling loads by arc-length method are less than 1% for both SC-1 and SC-2, and the buckling modes and distortion are well trailed with load increasing.

     

/

返回文章
返回