PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能

Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites

  • 摘要: 为探究热塑性酚酞基聚醚酮(Polyaryletherketone with Cardo,PEK-C)树脂薄膜及膜厚对层间增韧碳纤维/环氧树脂复合材料力学性能的影响,利用浸渍提拉法制备了三种不同厚度(分别约为1 μm、10 μm、30 μm)的PEK-C膜,通过热压成型制备了层间增韧碳纤维/环氧树脂复合材料层合板,对其进行了Ⅰ型层间断裂韧性、冲击后压缩强度、层间剪切及弯曲性能测试,并利用SEM观察微观形貌及AFM扫描微观相图。结果表明:不同PEK-C膜厚增韧碳纤维/环氧树脂复合材料的Ⅰ型层间断裂韧性、冲击后压缩强度及层间剪切强度有不同程度提高,Ⅰ型层间断裂韧性及层间剪切强度以膜厚为10 μm最佳,分别增大了157.17%和17.57%,冲击后压缩强度以膜厚为30 μm最佳,达到了186.67 MPa,这是由于PEK-C与环氧树脂在热压固化过程中形成了双相结构,改善了材料韧性;但弯曲性能持续下降,强度及模量由未增韧的1 551 MPa、106 GPa分别降至30 μm时的965 MPa、79 GPa,这是由于PEK-C树脂扩散进入环氧树脂中,降低了纤维体积分数及材料刚度。

     

    Abstract: The thermoplastic resin polyaryletherketone with cardo (PEK-C) films of three different thicknesses (about 1 μm, 10 μm, 30 μm) were prepared by dip-coating method. Hot pressing technology was employed to obtain the film interleaved carbon fiber/epoxy composite laminates. The mode I interlaminar fracture toughness (GIC), compressive after impact (CAI), interlaminar shear strength and flexural properties were tested to investigate the effect of PEK-C film and film thickness on the mechanical properties of carbon fiber/epoxy composites. The microstructure was observed by SEM and the phase structure was scanned by AFM. The results show that GIC, CAI and interlaminar shear strength increase for the carbon fiber/epoxy composite laminates with PEK-C films of different thickness. GIC and shear strength are increased maximally at a film thickness of 10 μm, which are increased by 157.17% and 17.57%, respectively. CAI is the largest at a film thickness of 30 μm, reaching 186.67 MPa due to the fact that PEK-C and epoxy resin form a dual-phase structure during the hot pressing curing process, improving the toughness of the material. The flexural strength and flexural modulus of carbon fiber/epoxy composite laminates decrease with the increase of the film thickness, from 1 551 MPa, 106 GPa without films to 965 MPa, 79 GPa at the film thickness of 30 μm due to the diffusion of PEK-C resin into the epoxy resin, which reduces the fiber volume fraction and material stiffness.

     

/

返回文章
返回