V-N-TiO2/凹凸棒土和V-N-TiO2/玻璃珠复合材料的吸附及光催化性能

Adsorption and photocatalytic properties of V-N-TiO2/attapulgite and V-N-TiO2/glass beads composites

  • 摘要: 采用自主研制的V-N-TiO2光催化剂、V-N-TiO2/凹凸棒土、V-N-TiO2/玻璃珠光催化复合材料,选用腐殖酸、亚甲基蓝、二甲基甲酰胺为目标降解物,对复合材料的吸附特点和光催化性能进行了研究。研究表明,除对二甲基甲酰胺,V-N-TiO2光催化剂、V-N-TiO2/凹凸棒土、V-N-TiO2/玻璃珠光催化复合材料、凹凸棒土、玻璃珠负载材料对腐殖酸、亚甲基蓝的吸附符合Langmuir等温模型,V-N-TiO2/凹凸棒土、V-N-TiO2/玻璃珠光催化复合材料的负载形式对其吸附性能影响最大。V-N-TiO2光催化剂、V-N-TiO2/凹凸棒土、V-N-TiO2/玻璃珠光催化复合材料对腐殖酸、亚甲基蓝的光催化反应均符合一级动力学方程。V-N-TiO2/凹凸棒土、V-N-TiO2/玻璃珠光催化复合材料的光催化性能与吸附平衡常数Ka、光催化表面反应的速率常数Kr有关。当光催化复合材料对不同目标降解物的吸附平衡常数差别较大时,吸附平衡常数越大,反应速率常数越大,光催化反应进行得越快;当光催化复合材料对不同目标降解物的吸附平衡常数差别不大时,光催化表面反应的速率常数越大,反应速率常数则越大,光催化反应进行得越快。

     

    Abstract: The adsorption characteristics and photocatalytic properties of self-developed V-N-TiO2, V-N-TiO2/attapulgite and V-N-TiO2/glass beads composites were studied. The humic acid, methylene blue, and dimethylformamide were used as the target degradants. The results show that the adsorption of humic acid and methylene blue except dimethylformamide by V-N-TiO2, V-N-TiO2/attapulgite and V-N-TiO2/glass beads composites, attapulgite, glass beads conforms to the Langmuir isotherm model. The loading form of V-N-TiO2/attapulgite and V-N-TiO2/glass beads composites has the greatest influence on its adsorption performance. All photocatalytic reactions of humic acid and methylene blue by V-N-TiO2, V-N-TiO2/attapulgite and V-N-TiO2/glass beads composites are consistent with the first-order kinetic equation. The photocatalytic property of V-N-TiO2/attapulgite and V-N-TiO2/glass beads composites is related to the adsorption equilibrium constant Ka and the photocatalytic surface reaction rate constant Kr. When the composite has a large difference in the value of the adsorption equilibrium constant for different target degradation products, the greater the adsorption equilibrium constant, the greater the reaction rate constant, the faster the photocatalytic reaction proceeds. When the composite does not differ greatly in the value of the adsorption equilibrium constant for different target degradation products, the greater the photocatalytic surface reaction rate constant, the greater the reaction rate constant, and the faster the photocatalytic reaction proceeds.

     

/

返回文章
返回