齿板-玻璃纤维/聚氨酯泡沫芯夹层梁的低速冲击性能

Low-velocity impact behavior of tooth plate glass fiber/polyurethane foam core sandwich beams

  • 摘要: 提出了一种由齿板-玻璃纤维(TP-GF)混合面板和聚氨酯(PU)泡沫芯材组成的新型TP-GF/PU泡沫夹层梁,结构中金属板通过齿钉压入GF与内部芯材连接,该夹层梁采用真空导入模压工艺制作。通过低速冲击试验,研究了不同冲击能量、纤维厚度和泡沫密度下TP-GF/PU泡沫夹层梁的冲击响应和损伤模式,并与普通的夹层梁进行了对比分析;通过双悬臂梁试验研究了混合夹层梁的界面性能,计算了夹层梁的应变能释放率。结果表明:在22 J、33 J、44 J能量冲击下,泡沫芯材密度为150 kg/m3的TP-GF/PU泡沫夹层梁的最大接触力较普通夹层梁分别提高了31.2%、48.6%、33.3%,冲击能量吸收分别增加了17.2%、11.3%、15.5%;随着冲击能量、面板纤维层数及芯材密度的增加,TP-GF/PU泡沫夹层梁最大接触力增大,密度较低的TP-GF/PU泡沫夹层梁损伤形式主要为面板的局部弯曲,而芯材密度较高的TP-GF/PU泡沫夹层梁则以穿透损伤为主;增加泡沫芯材密度和面板纤维厚度能够提高TP-GF/PU泡沫夹层梁的抗冲击性能,随着芯材密度的增大TP-GF/PU泡沫夹层梁的应变能释放率峰值越高,界面性能越好。

     

    Abstract: A new family of tooth plate-glass fiber/polyurethane (TP-GF/PU) foam core sandwich beams consisted of TP-GF facesheets and a PU foam core were studied, in which tooth plates were connected with foam core through tooth nails. TP-GF/PU foam core sandwich beams were fabricated by a vacuum-assisted resin infusion process. The aim of this article is to investigate the impact response and impact damage of TP-GF/PU foam core sandwich beams with various foam densities and fiber thickness under low velocity impact tests. Double cantilever tests were also conducted to investigate the interfacial properties of TP-GF/PU foam core sandwich beams. An analytical model was used to calculate the strain energy release rate of TP-GF/PU foam core sandwich beams. The test results show that, under the energy impact of 22 J, 33 J and 44 J, the maximum contact force of the sandwich beam with a density of 150 kg/m3 is 31.2%, 48.6% and 33.3% higher than that of the ordinary sandwich beams, respectively. The absorbed energy is 17.2%, 11.3%, 15.5% higher than that of the ordinary sandwich beams, respectively. The maximum contact force increased with the increase of foam core density and impact energy. The main damage modes for TP-GF/PU with low foam density are face sheet bending. The strain energy release rate of TP-GF/PU specimen increase with the increase of the foam density.

     

/

返回文章
返回