醇辅助还原法可控制备Cu@Ag核壳颗粒及其抗氧化性能

Fabrication and anti-oxidation abilities of Cu@Ag core-shell nanoparticles by polyol-assisted method

  • 摘要: 研究了一种Ag包裹量可控制备Cu@Ag核壳颗粒的方法,其中利用乙二醇(EG)作为还原剂,AgNO3作为Ag源。探讨了不同分散剂,明胶、十六烷基三甲基溴化铵(CTAB)、聚乙烯吡咯烷酮(PVP)对Cu@Ag核壳颗粒形貌的影响,其中明胶作为分散剂时的包覆效果最佳。以明胶作为分散剂,当AgNO3浓度为0.93 mol/L时,制得了包裹均匀的Cu@Ag核壳颗粒,其压实薄膜电阻仅为1.6 Ω/sq,具有良好的导电性。通过表面Ag的包裹,Cu@Ag核壳颗粒在空气中放置4个月后,压实薄膜电阻为12.6 Ω/sq,表现出持久的抗氧化性能。醇还原法可以实现在Cu颗粒表面快捷可控地制备Ag包裹层,包覆率高,且Cu@Ag复合颗粒抗氧化性能持久,适用于工业生产。

     

    Abstract: A simple method was introduced to prepare Cu@Ag core-shell particles at room temperatureby using ethylene glycol (EG) as the reducing agent and AgNO3 as the source of Ag atom. The effects of types of dispersing agent including gelatin, cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP)on the morphology of Cu@Ag core-shell particles were studied. The results show that gelatin is the best choice as dispersing agent. When the concentration of AgNO3 is 0.93 mol/L, the copper particles are completely covered with Ag nanoparticles on the surface with gelatin as dispersing agent. Because of the protection of Ag nanoparticles on the surface of Cu particles, the sheet resistance of compacted film based on Cu@Ag core-shell nanoparticles is as low as 1.6 Ω/sq. After being exposed in air for 4 months, the sheet resistance of the Cu@Ag core-shell particles is a little bit higher as 12.6 Ω/sq, which shows an enduring oxidation resistance of Cu@Ag core-shell particles.The silver can be efficiently achieved over the Cu particles under control and shows better anti-oxidation abilities than Cu particles with enduring oxidation resistance. This is a remarkable improvement for the electrical conductivity of Cu particles, which lays the foundations for the application of Cu@Ag core-shell particles in industrial production.

     

/

返回文章
返回