Volume 38 Issue 5
May  2021
Turn off MathJax
Article Contents
XUE Yanqing, HAO Qitang, LI Xinlei, et al. Effect of Mg on microstructure and mechanical properties of in-situ TiB2/Al-4.5Cu composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1507-1516. doi: 10.13801/j.cnki.fhclxb.20200814.003
Citation: XUE Yanqing, HAO Qitang, LI Xinlei, et al. Effect of Mg on microstructure and mechanical properties of in-situ TiB2/Al-4.5Cu composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1507-1516. doi: 10.13801/j.cnki.fhclxb.20200814.003

Effect of Mg on microstructure and mechanical properties of in-situ TiB2/Al-4.5Cu composites

doi: 10.13801/j.cnki.fhclxb.20200814.003
  • Received Date: 2020-07-06
  • Accepted Date: 2020-08-06
  • Available Online: 2020-08-17
  • Publish Date: 2021-05-01
  • The 3wt% TiB2/Al-4.5Cu composites with different mass fraction of Mg were fabricated by Al-K2TiF6-KBF4 molten salt reaction method. The influences of Mg and multistage heat treatment on the microstructure and mechanical properties of the 3wt% TiB2/Al-4.5Cu composite were studied by means of SEM, TEM, HM hardness test and room temperature tensile test. The microstructure observation shows that the agglomeration of TiB2 particles is obviously improved after multistage heat treatment along with addition of Mg, In particular, with 3wt% Mg, the average size of TiB2 particles is about 130 nm, accompanied by a large number of dispersed nano particles, and the grain size of α-Al is also significantly reduced. The mechanical test results show that after multistage heat treatment, the hardness and tensile strength of the 3wt% TiB2/Al-4.5Cu composite are enhanced with the increase of Mg content. However, excess Mg content (mass fraction≥4wt%) will decrease the refinement effect of TiB2 particles. The analysis reveals that addition of Mg can reduce the interfacial energy of TiB2/α-Al and block the formation of brittle phase Al3Ti, Al2B. Meanwhile, the MgAl2O4 formed by reaction makes the interface become into the TiB2/MgAl2O4/α-Al, which could restrain the agglomeration of TiB2 particles and improve the wettability of the interface between TiB2 particles and Al liquid, increase the nucleation rate and refine the grain size.

     

  • loading
  • [1]
    苏杰, 李亚智, 张代龙, 等. 原位自生TiB2颗粒增强2024-T4铝基复合材料断裂行为数值模拟[J]. 复合材料学报, 2018, 35(1):132-141.

    SU Jie, LI Yazhi, ZHANG Dailong, et al. Numerical simulation of fracture behavior of in-situ TiB2 particle reinforced 2024-T4 aluminum matrix composites[J]. Acta Materiae Compositae Sinica,2018,35(1):132-141(in Chinese).
    [2]
    SUN J, WANG X Q, CHEN Y, et al. Effect of Cu element on morphology of TiB2 particles in TiB2/Al-Cu composites[J]. Transactions of Nonferrous Metals Society of China,2020,30(5):1148-1156. doi: 10.1016/S1003-6326(20)65285-2
    [3]
    LIU J, LIU Z W, DONG Z W, et al. On the preparation and mechanical properties of in situ small-sized TiB2/Al-4.5Cu composites via ultrasound assisted RD method[J]. Journal of Alloys and Compounds,2018,765:1008-1017. doi: 10.1016/j.jallcom.2018.06.303
    [4]
    MA Y, ADDAD A, JI G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite[J]. Acta Materialia,2020,185:287-299.
    [5]
    童攀, 林立, 王全兆, 等. 颗粒尺寸对B4C增强铝基中子吸收材料界面反应与力学性能的影响[J]. 复合材料学报, 2019, 36(4):927-937.

    TONG Pan, LIN Li, WANG Quanzhao, et al. Effects of particle size on interfacial reaction and mechanical properties of B4C reinforced aluminum matrix neutron absorber materials[J]. Acta Materiae Compositae Sinica,2019,36(4):927-937(in Chinese).
    [6]
    VIVEKANANDA A S, BALASIVANANDHA P S, PASKARAMOORTHY R. Influence of process parameters of aluminothermic reduction process on grain refinement of in-situ Al/TiB2 composites[J]. Materials Today: Proceedings,2018,5(1):1071-1075. doi: 10.1016/j.matpr.2017.11.184
    [7]
    SUSWAGATA P, PRASANTA S, GOUTAM S. Tribological characteristics of stir-cast Al-TiB2 metal matrix composites in lubricated condition using taguchi based grey relation analysis[J]. Materials Today: Proceedings,2018,5(11):23629-23637. doi: 10.1016/j.matpr.2018.10.152
    [8]
    SURESH S, SHENBAG N, MOORTHI V. Aluminium-titanium diboride (Al-TiB2) metal matrix composites: Challenges and opportunities[J]. Procedia Engineering,2012,38:89-97. doi: 10.1016/j.proeng.2012.06.013
    [9]
    LIU K, NABAWY A M, CHEN X G. Influence of TiB2 nanoparticles on elevated-temperature properties of Al-Mn-Mg 3004 alloy[J]. Transactions of Nonferrous Metals Society of China,2017,27(4):771-778. doi: 10.1016/S1003-6326(17)60088-8
    [10]
    ZHAO Y, ZHENG Q L, LIU Z W. Ultrasound-induced distribution of nano-sized TiB2 particles within α-Al grains during solidification of Al-7Si alloy[J]. Materials Letters,2020,274:128030. doi: 10.1016/j.matlet.2020.128030
    [11]
    MENG J S, SHI X P, ZHANG S J, et al. Friction and wear properties of TiN-TiB2-Ni based composite coatings by argon arc cladding technology[J]. Surface and Coatings Technology,2019,374:437-447. doi: 10.1016/j.surfcoat.2019.06.015
    [12]
    AGRAWAL S, GHOSE A K, CHAKRABARTY I. Effect of rotary electromagnetic stirring during solidification of in-situ Al-TiB2 composites[J]. Materials & Design,2017,113:195-206.
    [13]
    REN S B, HE X B, QU X H, et al. Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiCP/Al composites[J]. Composites Science and Technology,2007,67(10):2103-2113. doi: 10.1016/j.compscitech.2006.11.006
    [14]
    童慧, 胡正飞, 祁昌亚, 等. Ca含量对SiC/Al泡沫复合材料性能和结构的影响[J]. 复合材料学报, 2016, 33(11):2576-2583.

    TONG Hui, HU Zhengfei, QI Changya, et al. Effect of Ca content on property and structure of SiC/Al foam composites[J]. Acta Materiae Compositae Sinica,2016,33(11):2576-2583(in Chinese).
    [15]
    XUE J, WANG J, HAN Y F, et al. Behavior of CeO2 additive in in-situ TiB2 particles reinforced 2014 Al alloy composite[J]. Transactions of Nonferrous Metals Society of China,2012,22(5):1012-1017. doi: 10.1016/S1003-6326(11)61277-6
    [16]
    赵瑞锋, 刘忠侠, 杨明生, 等. Mg对原位合成TiB2/Al-7Si复合材料的微观组织及力学性能的影响[J]. 中国有色金属学报, 2009, 19(9):1548-1554. doi: 10.3321/j.issn:1004-0609.2009.09.003

    ZHAO Ruifeng, LIU Zhongxia, YANG Mingsheng, et al. Effect of Mg on microstructures and mechanical properties of in-situ TiB2/Al-7Si composite[J]. The Chinese Journal of Nonferrous Metals,2009,19(9):1548-1554(in Chinese). doi: 10.3321/j.issn:1004-0609.2009.09.003
    [17]
    PAI B C, RAMANI G, PILLAI R M, et al. Role of magnesium in cast aluminium alloy matrix composites[J]. Journal of Materials Science,1995,30(8):1903-1911. doi: 10.1007/BF00353012
    [18]
    SINGH S, PAL K. Influence of surface morphology and UFG on damping and mechanical properties of composite reinforced with spinel MgAl2O4-TiB2 core-shell microcomposites[J]. Materials Characterization,2017,123:244-255. doi: 10.1016/j.matchar.2016.11.042
    [19]
    RAJAN T P D, NARAYAN P K, PILLAI R M, et al. Solidification and casting/mould interfacial heat transfer characteristics of aluminum matrix composites[J]. Composites Science and Technology,2007,67(1):70-78. doi: 10.1016/j.compscitech.2006.03.028
    [20]
    CHOI S W, CHO H S, KUMAI S. Effect of the precipitation of secondary phases on the thermal diffusivity and thermal conductivity of Al-4.5Cu alloy[J]. Journal of Alloys and Compounds,2016,688:897-902. doi: 10.1016/j.jallcom.2016.07.137
    [21]
    WU L, ZHOU C, LI X F, et al. Microstructural evolution and mechanical properties of cast high-Li-content TiB2/Al-Li-Cu composite during heat treatment[J]. Journal of Alloys and Compounds,2018,739:270-279. doi: 10.1016/j.jallcom.2017.12.126
    [22]
    张文龙, 陈嘉颐, 吴桢干, 等. (Al2O3)f/Al复合材料在强界面结合下的疲劳损伤模式[J]. 复合材料学报, 2003, 20(1):106-110.

    ZHANG Wenlong, CHEN Jiayi, WU Zhengan, et al. Fatigue damage mode of (Al2O3)f/Al composite[J]. Acta Materiae Compositae Sinica,2003,20(1):106-110(in Chinese).
    [23]
    中国国家标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People’s Republic of China. Metallic material-tensile testing Part 1: method of test at room temperature: GB/T 228.1—2010[S]. Beijing: China Standards Press, 2011(in Chinese).
    [24]
    WANG M, WANG Y, LIU J, et al. Effects of Zn content on microstructures and mechanical properties of in-situ TiB2/Al-Zn-Mg-Cu composites subjected to hot extrusion[J]. Materials Science and Engineering A,2019,742:364-372. doi: 10.1016/j.msea.2018.11.030
    [25]
    ZHANG L L, ZHENG Q J, JIANG H X, et al. Interfacial energy between Al melt and TiB2 particles and efficiency of TiB2 particles to nucleate α-Al[J]. Scripta Materialia,2019,160:25-28. doi: 10.1016/j.scriptamat.2018.09.042
    [26]
    ZHAO B W, YANG Q, WU L, et al. Effects of nanosized particles on microstructure and mechanical properties of an aged in-situ TiB2/Al-Cu-Li composite[J]. Materials Science and Engineering A,2019,742:573-583. doi: 10.1016/j.msea.2018.11.032
    [27]
    DAVARI M, JABBAREH M A. Modeling the interfacial energy of embedded metallic nanoparticles[J]. Journal of Physics and Chemistry of Solids,2020,138:109261. doi: 10.1016/j.jpcs.2019.109261
    [28]
    郭建, 沈宁福. SiC颗粒增强Al基复合材料中有害界面反应的控制[J]. 材料科学与工程, 2002, 20(4):605-608, 600.

    GUO Jian, SHEN Ningfu. Control of detrimental interface reaction in SiCP/Al composite materials[J]. Materials Science & Engineering,2002,20(4):605-608, 600(in Chinese).
    [29]
    邱丰, 佟昊天, 沈平, 等. 综述: SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1):87-100.

    QIU Feng, TONG Haotian, SHEN Ping, et al. Overview: SiC/Al interface reaction and interface structure evolution mechanism[J]. Acta Metallurgica Sinica,2019,55(1):87-100(in Chinese).
    [30]
    LIU R, YIN X M, FENG K X, et al. First-principles calculations on Mg/TiB2 interfaces[J]. Computational Materials Science,2018,149:373-378. doi: 10.1016/j.commatsci.2018.03.045
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (1105) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return