Volume 38 Issue 5
May  2021
Turn off MathJax
Article Contents
ZHAO Xuejing, SUN Xiaojun, WEI Jinzhi, et al. Electrochemical synthesis of Zn/Co-ZIF material and capacitive properties[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1543-1550. doi: 10.13801/j.cnki.fhclxb.20200831.001
Citation: ZHAO Xuejing, SUN Xiaojun, WEI Jinzhi, et al. Electrochemical synthesis of Zn/Co-ZIF material and capacitive properties[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1543-1550. doi: 10.13801/j.cnki.fhclxb.20200831.001

Electrochemical synthesis of Zn/Co-ZIF material and capacitive properties

doi: 10.13801/j.cnki.fhclxb.20200831.001
  • Received Date: 2020-06-08
  • Accepted Date: 2020-08-18
  • Available Online: 2020-08-31
  • Publish Date: 2021-05-01
  • In-situ synthesis of bimetallic Zn/Co-zeolitic imidazolate frameworks (ZIF) was successfully achieved by electrochemical method. The optimal synthesis conditions of the Zn/Co-ZIF were explored by changing the reaction solvent ratio, the applied voltage and the amount of metal cobalt salt added. The results show that Zn/Co-ZIF with irregular layered particle structure is obtained under the conditions of the volume ratio of N,N-dimethylformamide (DMF) to ethanol (EtOH) is 1∶4, the applied voltage is 5 V, and the added metal cobalt salt is 0.08 g. The electrode was prepared with Zn/Co-ZIF as the active material for the study of supercapacitor performance, and compared with ZIF-8 synthesized in situ by electrochemical method under the same conditions. Capacitance performance was explored through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The results show that the CV curves of Zn/Co-ZIF electrode materials at different scanning speeds have a pair of redox peaks, which show obvious pseudo-capacitance characteristics. At a current density of 1 A/g, the specific capacitance of the Zn/Co-ZIF electrode material is 189 F/g, which is higher than that of the ZIF-8 electrode (72 F/g). After 2000 cycles, the specific capacitance value is still can maintain 90.5% of the initial value.

     

  • loading
  • [1]
    李艺, 张琳. 能源转型背景下传统能源与新能源发展的思考[J]. 电力勘测设计, 2020(4):66-71.

    LI Y, ZHANG L. Thought on the development of the traditional energy and new energy in the context of energy transition[J]. Elecctric Power Survey & Design,2020(4):66-71(in Chinese).
    [2]
    ZHANG Q F, UCHAKER E, CANDELARIAS L, et al. Nanomaterials for energy conversion and storage[J]. Chemical Society Reviews,2013,42(7):3127-3171.
    [3]
    肖谧, 宿玉鹏, 杜伯学. 超级电容器研究进展[J]. 电子元件与材料, 2019, 38(9):1-12.

    XIAO M, SU Y P, DU B X. Research progress of supercapacitors[J]. Electronic Components and Materials,2019,38(9):1-12(in Chinese).
    [4]
    YAN J, WANG Q, WEI T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials,2014,4(4):1300816.
    [5]
    CHENG Y W, ZHANG H B, LU S T, et al. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes[J]. Nanoscale,2013,5(3):1067-1073.
    [6]
    郑文庆, 郑玉婴, 张祥, 等. NiCo2O4复微球的制备及其电化学性能[J]. 复合材料学报, 2017, 34(9):1982-1988.

    ZHENG W Q, ZHENG Y Y, ZHANG X, et al. Synthesis and electrochemical properties of NiCo2O4 microsphere[J]. Acta Materiae Compositea Sinica,2017,34(9):1982-1988(in Chinese).
    [7]
    孙银, 黄乃宝, 王东超, 等. 赝电容型超级电容器电极材料研究进展[J]. 电源技术, 2018, 45(5):747-750. doi: 10.3969/j.issn.1002-087X.2018.05.046

    SUN Y, HUANG N B, WANG D C, et al. Research progress of electrode materials for pseudosuper-capacitor[J]. Chinese Journal of Power Source,2018,45(5):747-750(in Chinese). doi: 10.3969/j.issn.1002-087X.2018.05.046
    [8]
    YANG H M, LIU X, SONG X L. In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr[J]. Transactions of Nonferrous Metals Society of China,2015,25(12):3987-3994.
    [9]
    EDDAOUDI M, LI H, YAGHI O M. Highly porous and stable metal-organic frameworks: Structure design and sorption properties[J]. Journal of the American Chemical Society,2000,122(7):1391-1397.
    [10]
    EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science,2002,295(5554):469-472.
    [11]
    张政, 刘洪达, 宋朝霞, 等. 聚苯胺包覆CoFe类普鲁士蓝复合材料的超电容性能[J]. 复合材料学报, 2020, 37(3):731-739.

    ZHANG Z, LIU H D, SONG C X, et al. Super-capactive performance of polyaniline coated CoFe Prussian blue analogue composite[J]. Acta Materiae Compositea Sinica,2020,37(3):731-739(in Chinese).
    [12]
    BANERJEE R, FURUKAWA H, BRITT D, et al. Control of pore size and functionality inisoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. Journal of the American Chemical Society,2009,131(11):3875-3872.
    [13]
    ZHANG H, DERIA P, FARHA O K, et al. Ather-modynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks[J]. Energy & Environmental Science,2015,8(5):1501-1510.
    [14]
    王亮, 田聃, 刘安琪, 等. GO@MIL-101的制备及其对水中Cr(Ⅵ)的去除[J]. 化工学报, 2017, 68(5):2105-2111.

    WANG L, TIAN D, LIU A Q, et al. Preparation of grapheme oxide@MIL-101 composite and its performance in Cr(Ⅵ) removal from aqueous solution[J]. CIESC Journal,2017,68(5):2105-2111(in Chinese).
    [15]
    HUANG Y K, HONG D Y, CHANG J S, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation[J]. Angewandte Chemie International Edition,2008,47(22):4144-4148.
    [16]
    CUI Y, YUE Y, QIAN G, et al. Luminescent functional metal-organic frameworks[J]. Chemical Reviews,2012,112(2):1126-1162.
    [17]
    LI H, HAN Y, SHAO Z. Water-stable Eu-MOF fluorescent sensors for trivalent matal ionsand nitrobenzene[J]. Dalton Transactions,2017,46(36):12201-12208.
    [18]
    杨江峰, 元宁, 杜冰洁, 等. 双金属金属有机骨架材料的制备及性能研究进展[J]. 应用化学, 2018, 35(5):500-510. doi: 10.11944/j.issn.1000-0518.2018.05.170243

    YANG J F, YUAN N, DU B J, et al. Research progress in preparation technology and application of bimetal metal-organic frameworks materials[J]. Chinese Journal of Applied Chemistry,2018,35(5):500-510(in Chinese). doi: 10.11944/j.issn.1000-0518.2018.05.170243
    [19]
    ZHANG W, SHI Y, LI C, et al. Synthesis bimetallic MOFs MIL-100 (Fe-Mn) as an efficient catalyst for selective catalytic reduction of NOx with NH3[J]. Catalysis Letters,2016,146(10):1956-1964.
    [20]
    欧阳金波, 那兵, 周利民, 等. 基于MOF结构的超级电容器电极材料研究进展[J]. 华东理工大学学报, 2018, 41(3):267-270.

    OUYANG J B, NA B, ZHOU L M, et al. MOF-based electrode materials for supercapacitor[J]. Journal of East China University of Technology,2018,41(3):267-270(in Chinese).
    [21]
    付韫珒, 熊传溪. 双金属MOF基复合结构材料及其超级电容器性能[J]. 储能科学与技术, 2018, 7(3):495-501.

    FU Y J, XIONG C X. Double metal MOF-based composite structure and performance as super-capacitor electrode[J]. Energy Storage Science and Technology,2018,7(3):495-501(in Chinese).
    [22]
    ZHENG S, LI X, YAN B, et al. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage[J]. Advanced Energy Materials,2017,7(18):1602733.
    [23]
    QIU C, CAI F, WANG Y, et al. 2-Methylimidazole directed ambient synthesis of zinc-cobalt LDH nanosheets for efficient oxygen evolution reaction[J]. Journal of Colloid and Interface Science,2020,565:351-359.
    [24]
    郭誉, 刘咏. Ni2+复合MOF-5材料的制备工艺及其电化学性能研究[J]. 粉末冶金工业, 2017, 27(2):51-57.

    GUO Y, LIU Y. Preparation and electrochemical performance of Ni2+-doped MOF-5 crystals[J]. Powder Metallurgy Industry,2017,27(2):51-57(in Chinese).
    [25]
    CAO F F, GAN M Y, MA L, et al. Hierarchical sheet-like Ni-Co layered double hydroxide derived from a MOF template for high-performance supercapacitors[J]. Synthetic Metals,2017,234:154-160.
    [26]
    WANG L, HAN YZ, FENG X, et al. Metal-organic frameworks for energy storage: Batteries and supercapacitors[J]. Coordination Chemistry Reviews,2016,307:361-381.
    [27]
    LI T, LI C, HU X, et al. Reversible lithium storage in manganese and cobalt 1,2,4,5-benzenet-etracarboxylate metal-organic framework with high capacity[J]. RSC Advances,2016,6(66):61319-61324.
    [28]
    WEI J Z, WANG X L, SUN X J, et al. Rapid and large-scale synthesis of IRMOF-3 by electrochemistry method with enhanced fluorescence detection performance for TNP[J]. Inorganic Chemistry,2018,57(7):3818-3824.
    [29]
    LI W J, LU J, GAO S Y, et al. Electrochemical preparation of metal-organic framework films for fastdetection of nitro explosives[J]. Journal of Materials Chemistry A,2014,2(45):19473.
    [30]
    LOU X, NING Y, LI C, et al. Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms[J]. Science China Materials,2018,61(8):1040-1048.
    [31]
    DONG Y L, LU B, ZANG S, et al. Removal of methylene blue from coloured effluents by adsorption onto SBA-15[J]. Journal of Chemical Technology & Biotechnology,2011,86(4):616-619.
    [32]
    YANG J, ZHANG F, LU H, et al. Hollow Zn/Co-ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene[J]. Angewandte Chemie International Edition,2015,54(37):10889-10893.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1868) PDF downloads(152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return