Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
HAO Caihong, YANG Zepeng, CHANG Qing, et al. Preparation and photocatalytic performance of carbon dots/g-C3N4 composite catalyst[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5811-5819. doi: 10.13801/j.cnki.fhclxb.20230720.001
Citation: HAO Caihong, YANG Zepeng, CHANG Qing, et al. Preparation and photocatalytic performance of carbon dots/g-C3N4 composite catalyst[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5811-5819. doi: 10.13801/j.cnki.fhclxb.20230720.001

Preparation and photocatalytic performance of carbon dots/g-C3N4 composite catalyst

doi: 10.13801/j.cnki.fhclxb.20230720.001
Funds:  National Natural Science Foundation of China (22202186; 22105181); Fundamental Research Program of Shanxi Province (20210302124127; 20210302123029); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2020L0293)
  • Received Date: 2023-04-26
  • Accepted Date: 2023-07-07
  • Rev Recd Date: 2023-06-18
  • Available Online: 2023-07-20
  • Publish Date: 2023-10-15
  • The light absorption and photo-induced carrier recombination of g-C3N4 are the key problems that limit its efficient photocatalytic applications. Herein, carbon dots (CDs) were synthesized using coal pitch as precursor and then the CDs/g-C3N4 composite catalyst was prepared by ultrasonic-assisted method. The structure, optical and photoelectrochemical properties of the catalyst were characterized by TEM, XRD, UV-Vis diffuse reflection spectrum, PL spectrum, EIS test and photocurrent response test. The results show that the regulation of band structure and the formation of interface after the introduction of CDs expand the range of light absorption of the composite photocatalyst, promote the effective separation and migration of photogenerated electrons and holes, and thus facilitate the photocatalytic reaction. Using rhodamine B (RhB) as the model, the photocatalytic activity of CDs/g-C3N4 composite catalyst is significantly higher than that of pure g-C3N4 under visible light irradiation. The degradation rate of RhB can reach 98.6% within 40 min, and the degradation rate constant of CDs/g-C3N4 is 6.8 times that of g-C3N4. The capture of experiment of active species reveals that •O2 plays a major role in the degradation system. In addition, CDs/g-C3N4 composite catalyst exhibit good stability. After 5 cycles, the degradation rate of RhB is still up to 97.5%, which shows a good application prospect in visible light photocatalysis.

     

  • loading
  • [1]
    KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews,2009,38(1):253-278. doi: 10.1039/B800489G
    [2]
    YAN P C, JI F W, ZHANG W, et al. Engineering surface bromination in carbon nitride for efficient CO2 photoconversion to CH4[J]. Journal of Colloid and Interface Science,2023,634:1005-1013. doi: 10.1016/j.jcis.2022.12.063
    [3]
    GUAN G W, ZHENG S T, XIA M Y, et al. Incorporating CdS and anchoring Pt single atoms into porphyrinic metal-organic frameworks for superior visible-light and sunlight-driven H2 evolution[J]. Chemical Engineering Journal,2023,464:142530. doi: 10.1016/j.cej.2023.142530
    [4]
    CAO Z, ZHAO Y P, LI J M, et al. Rapid electron transfer-promoted tetracycline hydrochloride degradation: Enhanced activity in visible light-coupled peroxymonosulfate with PdO/g-C3N4/kaolinite catalyst[J]. Chemical Engineering Journal,2023,457:141191. doi: 10.1016/j.cej.2022.141191
    [5]
    CAO S W, LOW J X, YU J G, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials,2015,27(13):2150-2176. doi: 10.1002/adma.201500033
    [6]
    HE F, WANG Z X, LI Y X, et al. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts[J]. Applied Catalysis B: Environmental,2020,269:118828. doi: 10.1016/j.apcatb.2020.118828
    [7]
    FANG Y X, HOU Y D, FU X Z, et al. Semiconducting polymers for oxygen evolution reaction under light illumination[J]. Chemical Society Reviews,2022,122(3):4204-4256. doi: 10.1021/acs.chemrev.1c00686
    [8]
    YANG M C, LIAN R H, ZHANG X R, et al. Photocatalytic cyclization of nitrogen-centered radicals with carbon nitride through promoting substrate/catalyst interaction[J]. Nature Communications,2022,13(1):4900-4909. doi: 10.1038/s41467-022-32623-3
    [9]
    MING H B, ZHANG P Y, YANG Y, et al. Tailored poly-heptazine units in carbon nitride for activating peroxymonosulfate to degrade organic contaminants with visible light[J]. Applied Catalysis B: Environmental,2022,311:121341. doi: 10.1016/j.apcatb.2022.121341
    [10]
    GAO Y, LIN J Y, ZHANG Q Z, et al. Facile synthesis of heterostructured YVO4/g-C3N4/Ag photocatalysts with enhanced visible-light photocatalytic performance[J]. Applied Catalysis B: Environmental,2018,224:586-593. doi: 10.1016/j.apcatb.2017.11.003
    [11]
    吴健博, 石亮, 郑小强, 等. g-C3N4/BiOCl 复合光催化剂作为2D/2D异质结用于光催化降解染料性能研究[J]. 复合材料学报, 2023, 40(1):323-333.

    WU Jianbo, SHI Liang, ZHENG Xiaoqiang, et al. g-C3N4/BiOCl composite photocatalyst used as 2D/2D heterojunction for photocatalytic degradation of dyes[J]. Acta Materiae Compositae Sinica,2023,40(1):323-333(in Chinese).
    [12]
    TANG C S, CHENG M, LAI C, et al. Recent progress in the applications of non-metal modified graphitic carbon nitride in photocatalysis[J]. Coordination Chemistry Reviews,2023,474:214846. doi: 10.1016/j.ccr.2022.214846
    [13]
    梁家驰, 李昕奇, 左建良, 等. 石墨相氮化碳形貌调控及其光催化性能研究[J]. 化工新型材料, 2022, 50(8):223-228.

    LIANG Jiachi, LI Xinqi, ZUO Jianliang, et al. Morphology control of g-C3N4 with improved photocatalytic performance[J]. New Chemical Materials,2022,50(8):223-228(in Chinese).
    [14]
    郑富凯, 李宗霖, 曹煜祺, 等. 钴、碳共掺杂氮化碳的制备及其光催化分解水产氢性能[J]. 无机化学学报, 2021, 37(11):2029-2036. doi: 10.11862/CJIC.2021.226

    ZHENG Fukai, LI Zonglin, CAO Yuqi, et al. Cobalt and carbon co-doped carbon nitride for enhanced photocatalytic hydrogen evolution[J]. Chinese Journal of Inorganic Chemistry,2021,37(11):2029-2036(in Chinese). doi: 10.11862/CJIC.2021.226
    [15]
    SARAEV A A, KURENKOVA A Y, ZHURENOK A V, et al. Selectivity control of CO2 reduction over Pt/g-C3N4 photocatalysts under visible light[J]. Catalysts,2023,13(2):273-287. doi: 10.3390/catal13020273
    [16]
    WON J H, KIM M K, OH H S, et al. Scalable production of visible light photocatalysts with extended nanojunctions of WO3/g-C3N4 using zeta potential and phase control in sol-gel process[J]. Applied Surface Science,2023,612:155838. doi: 10.1016/j.apsusc.2022.155838
    [17]
    FU J W, YU J G, JIANG C J, et al. g-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials,2018,8(3):1701503. doi: 10.1002/aenm.201701503
    [18]
    车望远, 刘长军, 杨焜, 等. 荧光碳点的制备和性质及其应用研究进展[J]. 复合材料学报, 2016, 33(3):431-450. doi: 10.13801/j.cnki.fhclxb.20160219.001

    CHE Wangyuan, LIU Changjun, YANG Kun, et al. Research progress in preparation, property and applications of fluorescent carbon dots[J]. Acta Materiae Compositae Sinica,2016,33(3):431-450(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160219.001
    [19]
    CAI T T, LIU B, PANG E N, et al. A review on the preparation and applications of coal-based fluorescent carbon dots[J]. New Carbon Materials,2020,35(6):646-666. doi: 10.1016/S1872-5805(20)60520-0
    [20]
    ZHAO Z X, REISCHAUER S, PIEBER B, et al. Carbon dot/TiO2 nanocomposites as photocatalysts for metallaphotocatalytic carbon-heteroatom cross-couplings[J]. Green Chemistry,2021,23(12):4524-4530. doi: 10.1039/D1GC01284C
    [21]
    REN Y Q, HAO C H, CHANG Q, et al. Boosting chemoselective reduction of 4-nitrostyrene via photoinduced energetic electrons from in situ formed Cu nanoparticles on carbon dots[J]. Green Chemistry,2021,23(8):2938-2943. doi: 10.1039/D1GC00409C
    [22]
    HU S L, ZHANG W J, LI N, et al. Integrating biphase γ- and α-Fe2O3 with carbon dots as a synergistic nanozyme with easy recycle and high catalytic activity[J]. Applied Surface Science,2021,545:148987. doi: 10.1016/j.apsusc.2021.148987
    [23]
    CAI T T, CHANG Q, LIU B, et al. Triggering photocatalytic activity of carbon dot-based nanocomposites by a self-supplying peroxide[J]. Journal of Materials Chemistry A,2021,9(14):8991-8997. doi: 10.1039/D1TA01097B
    [24]
    LI S J, PANG E N, LI N, et al. High reaction activity enables carbon dots to construct multicomponent nanocomposites with superior catalytic performance[J]. Inorganic Chemistry Frontiers,2022,9(8):1761-1769. doi: 10.1039/D2QI00260D
    [25]
    LIU W, LI Y Y, LIU F Y, et al. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation[J]. Water Research,2019,151:8-19. doi: 10.1016/j.watres.2018.11.084
    [26]
    LIANG J N, YANG X H, FU H T, et al. Integrating optimal amount of carbon dots in g-C3N4 for enhanced visible light photocatalytic H2 evolution[J]. International Journal of Hydrogen Energy,2022,47(41):18032-18043. doi: 10.1016/j.ijhydene.2022.03.285
    [27]
    WANG G, LI X, HAO P C, et al. g-C3N4/nitrogen-doped carbon dot/silver nanoparticle-based ternary photocatalyst for water pollutant treatment[J]. ACS Applied Nano Materials,2023,6(7):5747-5758. doi: 10.1021/acsanm.3c00185
    [28]
    WANG J, GAO M M, HO G W. Bidentate-complex-derived TiO2/carbon dot photocatalysts: In situ synthesis, versatile heterostructures, and enhanced H2 evolution[J]. Journal of Materials Chemistry A,2014,2(16):5703-5709. doi: 10.1039/c3ta15114j
    [29]
    YOU Z Y, LI G, WANG C H, et al. The synergistic effect of potassium ions and nitrogen defects on carbon nitride for enhanced photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy,2023,48(42):15934-15943. doi: 10.1016/j.ijhydene.2023.01.089
    [30]
    ZHENG Y M, LUO Y, RUAN Q S, et al. Plasma-induced hierarchical amorphous carbon nitride nanostructure with two N2 C-site vacancies for photocatalytic H2O2 production[J]. Applied Catalysis B: Environmental,2022,311:121372. doi: 10.1016/j.apcatb.2022.121372
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (530) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return