Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
YAO Wanchen, CHENG Jing, SUN Wenwen, et al. Recent advances in bioinspired superhydrophobic surfaces for biomedical applications[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5502-5517. doi: 10.13801/j.cnki.fhclxb.20230607.003
Citation: YAO Wanchen, CHENG Jing, SUN Wenwen, et al. Recent advances in bioinspired superhydrophobic surfaces for biomedical applications[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5502-5517. doi: 10.13801/j.cnki.fhclxb.20230607.003

Recent advances in bioinspired superhydrophobic surfaces for biomedical applications

doi: 10.13801/j.cnki.fhclxb.20230607.003
Funds:  National Natural Science Foundation of China (22008151); Shanghai Sailing Program (20YF1418000); Excellent Doctoral/Master Dissertation Training Program of Shanghai University of Medicine & Health Sciences (E1-2601-22-203001)
  • Received Date: 2023-03-20
  • Accepted Date: 2023-05-26
  • Rev Recd Date: 2023-05-10
  • Available Online: 2023-06-08
  • Publish Date: 2023-10-15
  • Biomimetic superhydrophobic surfaces have been widely used in critical areas such as healthcare, environment, and energy. First, this work briefly reviewed bioinspired design and preparation technology, which combined with theoretical basis on superhydrophobicity. Second, due to the significant biological effects for high water/blood-repellency, biological/blood compatibility, anticoagulation/thrombosis, anti-bacteria, low bio-adhesion, etc., superhydrophobic surfaces have attracted much attention in biomedical applications. The present work mainly focused on summarizing representative applications of bioinspired superhydrophobic surfaces in wound healing (hemostatic dressings), anti-coagulation/anti-thrombotic (blood-contact medical devices), antibacterial surfaces, drug release, motion monitoring, biochips, anticorrosion of magnesium alloy, biomedical detection and so on in recent years. Finally, combining with our own research experience, we deeply analyzed the existing issues and challenges of bioinspired superhydrophobic surfaces in practical biomedical applications, mainly involving mechanical durability, chemical corrosion, biofouling, interfacial construction, and biomedical applications. Therefore, focusing on practical functions and high performance, conceptual design of superhydrophobic surfaces will be moved toward industrial applications.

     

  • loading
  • [1]
    王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料[J]. 物理学报, 2016, 65(18):61-83.

    WANG Pengwei, LIU Mingjie, JIANG Lei. Biomimetic multiscale superinfiltrating interfacial materials[J]. Journal of Physics,2016,65(18):61-83(in Chinese).
    [2]
    LIU M, WANG S, JIANG L. Nature-inspired superwettability systems[J]. Nature Reviews Materials,2017,2(7):1-17.
    [3]
    YONG H, LI Z, HUANG X, et al. Superhydrophobic materials: Versatility and translational applications[J]. Advanced Materials Interfaces,2022,9(30):2200435. doi: 10.1002/admi.202200435
    [4]
    NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany,1997,79(6):667-677. doi: 10.1006/anbo.1997.0400
    [5]
    BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8. doi: 10.1007/s004250050096
    [6]
    FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials,2002,14(24):1857-1860. doi: 10.1002/adma.200290020
    [7]
    ZHANG W, WANG D, SUN Z, et al. Robust superhydrophobicity: Mechanisms and strategies[J]. Chemical Society Reviews,2021,50(6):4031-4061. doi: 10.1039/D0CS00751J
    [8]
    LIN X, HONG J. Recent advances in robust superwettable membranes for oil-water separation[J]. Advanced Materials Interfaces,2019,6(12):1900126. doi: 10.1002/admi.201900126
    [9]
    CIVAN F. Model for interpretation and correlation of contact angle measurements[J]. Journal of Colloid & Interface Science,1997,192(2):500-502.
    [10]
    WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Transactions of the Faraday Society,1936,28(8):988-994. doi: 10.1021/ie50320a024
    [11]
    CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546-551. doi: 10.1039/tf9444000546
    [12]
    ZENG Q, ZHOU H, HUANG J, et al. Review on the recent development of durable superhydrophobic materials for practical applications[J]. Nanoscale,2021,13(27):11734-11764. doi: 10.1039/D1NR01936H
    [13]
    YOHE S T, COLSON Y L, GRINSTAFF M W. Superhydrophobic materials for tunable drug release: Using displacement of air to control delivery rates[J]. Journal of the American Chemical Society,2012,134(4):2016-2019. doi: 10.1021/ja211148a
    [14]
    GAO W, WU W, CHEN C, et al. Design of a superhydrophobic strain sensor with a multilayer structure for human motion monitoring[J]. ACS Applied Materials & Interfaces,2022,14(1):1874-1884.
    [15]
    ZHU T, WU J, ZHAO N, et al. Superhydrophobic/superhydrophilic Janus fabrics reducing blood loss[J]. Advanced Healthcare Materials,2018,7(7):1701086. doi: 10.1002/adhm.201701086
    [16]
    YE Z, LI S, ZHAO S, et al. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties[J]. Chemical Engineering Journal,2021,420:127680. doi: 10.1016/j.cej.2020.127680
    [17]
    ZHU Y, SONG G, WU P, et al. A protective superhydrophobic Mg-Zn-Al LDH film on surface-alloyed magnesium[J]. Journal of Alloys and Compounds,2021,855:157550. doi: 10.1016/j.jallcom.2020.157550
    [18]
    CHEN Y, LI K, ZHANG S, et al. Bioinspired superwettable microspine chips with directional droplet transportation for biosensing[J]. ACS Nano,2020,14(4):4654-4661. doi: 10.1021/acsnano.0c00324
    [19]
    ALLIONE M, LIMONGI T, MARINI M, et al. Micro/nanopatterned superhydrophobic surfaces fabrication for biomolecules and biomaterials manipulation and analysis[J]. Micromachines,2021,12(12):1501. doi: 10.3390/mi12121501
    [20]
    LI J, TIAN J, GAO Y, et al. All-natural superhydrophobic coating for packaging and blood-repelling materials[J]. Chemical Engineering Journal,2021,410:128347. doi: 10.1016/j.cej.2020.128347
    [21]
    BHUSHAN B, NOSONOVSKY M. The rose petal effect and the modes of superhydrophobicity[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2010,368(1929):4713-4728. doi: 10.1098/rsta.2010.0203
    [22]
    SHAO Y, ZHAO J, FAN Y, et al. Shape memory superhydrophobic surface with switchable transition between "Lotus Effect" to "Rose Petal Effect"[J]. Chemical Engineering Journal,2020,382:122989. doi: 10.1016/j.cej.2019.122989
    [23]
    HAN Z, MU Z, LI B, et al. Active antifogging property of monolayer SiO2 film with bioinspired multiscale hierarchical pagoda structures[J]. ACS Nano,2016,10(9):8591-8602. doi: 10.1021/acsnano.6b03884
    [24]
    KOH J, YANG E, JUNG G, et al. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects[J]. Science,2015,349(6247):517-521. doi: 10.1126/science.aab1637
    [25]
    YAMAUCHI Y, TENJIMBAYASHI M, SAMITSU S, et al. Durable and flexible superhydrophobic materials: Abrasion/scratching/slicing/droplet impacting/bending/twisting-tolerant composite with porcupinefish-like structure[J]. ACS Applied Materials & Interfaces,2019,11(35):32381-32389. doi: 10.1021/acsami.9b09524
    [26]
    LIU L, SHAN Y, PU M, et al. Preparation of superhydrophobic fabrics via chemical self-healing strategy and their high oil/water separation performance and enhanced durability[J]. Macromolecular Chemistry and Physics,2020,221(2):1900356. doi: 10.1002/macp.201900356
    [27]
    HUANG Z S, QUAN Y Y, MAO J J, et al. Multifunctional superhydrophobic composite materials with remarkable mechanochemical robustness, stain repellency, oil-water separation and sound-absorption properties[J]. Chemical Engineering Journal,2019,358:1610-1619. doi: 10.1016/j.cej.2018.10.123
    [28]
    WANG L, LUO J, CHEN Y, et al. Fluorine-free superhydrophobic and conductive rubber composite with outstanding deicing performance for highly sensitive and stretchable strain sensors[J]. ACS Applied Materials & Interfaces,2019,11(19):17774-17783.
    [29]
    AHMAD S, ZHANG J, FENG P, et al. Processing technologies for nomex honeycomb composites (NHCs): A critical review[J]. Composite Structures,2020,250:112545. doi: 10.1016/j.compstruct.2020.112545
    [30]
    LU Y, SATHASIVAM S, SONG J, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science,2015,347(6226):1132-1135. doi: 10.1126/science.aaa0946
    [31]
    CHEN J, YUAN L, SHI C, et al. Nature-inspired hierarchical protrusion structure construction for washable and wear-resistant superhydrophobic textiles with self-cleaning ability[J]. ACS Applied Materials & Interfaces,2021,13(15):18142-18151.
    [32]
    CHEN G, DAI Z, DING S, et al. Realization of integrative hierarchy by in-situ solidification of 'semi-cured' microcilia array in candle flame for robust and flexible superhydrophobicity[J]. Chemical Engineering Journal,2022,432:134400. doi: 10.1016/j.cej.2021.134400
    [33]
    GHODRATI M, MOUSAVI-KAMAZANI M, BAHRAMI Z. Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol-gel method for glass surfaces[J]. Scientific Reports,2023,13(1):548. doi: 10.1038/s41598-023-27811-0
    [34]
    YANG Z, LI H, ZHANG S, et al. Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor[J]. Chemical Engineering Journal,2021,425:130462. doi: 10.1016/j.cej.2021.130462
    [35]
    LIU L, MA Z, ZHU M, et al. Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection[J]. Journal of Materials Science & Technology,2023,132:59-68.
    [36]
    LI S, PAGE K, SATHASIVAM S, et al. Efficiently texturing hierarchical superhydrophobic fluoride-free translucent films by AACVD with excellent durability and self-cleaning ability[J]. Journal of Materials Chemistry A,2018,6(36):17633-17641. doi: 10.1039/C8TA05402A
    [37]
    LIN X, HEO J, CHOI M, et al. Simply realizing durable dual Janus superwettable membranes integrating underwater low-oil-adhesive with super-water-repellent surfaces for controlled oil-water permeation[J]. Journal of Membrane Science,2019,580:248-255. doi: 10.1016/j.memsci.2019.03.038
    [38]
    LIU M, LI M, XU S, et al. Bioinspired superhydrophobic surfaces via laser-structuring[J]. Frontiers in Chemistry,2020,8:835-839. doi: 10.3389/fchem.2020.00835
    [39]
    CHAKRABORTY A, MULRONEY A T, GUPTA M C. Superhydrophobic surfaces by microtexturing: A critical review[J]. Progress in Adhesion and Adhesives,2021,6:621-649.
    [40]
    KAUR G, MARMUR A, MAGDASSI S. Fabrication of superhydrophobic 3D objects by digital light processing[J]. Additive Manufacturing,2020,36:101669. doi: 10.1016/j.addma.2020.101669
    [41]
    LIU G, XIANG J, XIA Q, et al. Superhydrophobic cotton gauze with durably antibacterial activity as skin wound dressing[J]. Cellulose,2019,26(2):1383-1397. doi: 10.1007/s10570-018-2110-y
    [42]
    LI Z, MILIONIS A, ZHENG Y, et al. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion[J]. Nature Communications,2019,10(1):1-11. doi: 10.1038/s41467-018-07882-8
    [43]
    LI W, YU Q, YAO H, et al. Superhydrophobic hierarchical fiber/bead composite membranes for efficient treatment of burns[J]. Acta Biomaterialia,2019,92:60-70. doi: 10.1016/j.actbio.2019.05.025
    [44]
    MOVAFAGHI S, WANG W, BARK D L, et al. Hemocompatibility of super-repellent surfaces: Current and future[J]. Materials Horizons,2019,6(8):1596-1610. doi: 10.1039/C9MH00051H
    [45]
    JOKINEN V, KANKURI E, HOSHIAN S, et al. Superhydrophobic blood-repellent surfaces[J]. Advanced Materials,2018,30(24):1705104. doi: 10.1002/adma.201705104
    [46]
    FALDE E J, YOHE S T, COLSON Y L, et al. Superhydrophobic materials for biomedical applications[J]. Biomaterials,2016,104:87-103. doi: 10.1016/j.biomaterials.2016.06.050
    [47]
    WU X H, LIEW Y K, MAI C, et al. Potential of superhydrophobic surface for blood-contacting medical devices[J]. International Journal of Molecular Sciences,2021,22(7):3341. doi: 10.3390/ijms22073341
    [48]
    ZHANG J, LI G, LI D, et al. In vivo blood-repellent performance of a controllable facile-generated superhydrophobic surface[J]. ACS Applied Materials & Interfaces,2021,13(24):29021-29033.
    [49]
    LI Z, NGUYEN B L, CHENG Y C, et al. Durable, flexible, superhydrophobic and blood-repelling surfaces for use in medical blood pumps[J]. Journal of Materials Chemistry B,2018,6(39):6225-6233. doi: 10.1039/C8TB01547C
    [50]
    LI W, THIAN E S, WANG M, et al. Surface design for antibacterial materials: From fundamentals to advanced strategies[J]. Advanced Science,2021,8(19):2100368. doi: 10.1002/advs.202100368
    [51]
    田娜, 苏琼, 王彦斌, 等. 抗菌超疏水功能复合型涂料的研究进展[J]. 功能材料, 2023, 54(1):1040-1049.

    TIAN Na, SU Qiong, WANG Yanbin, et al. Research progress of antibacterial superhydrophobic functional composite coatings[J]. Functional Materials,2023,54(1):1040-1049(in Chinese).
    [52]
    ZHAN Y, YU S, AMIRFAZLI A, et al. Recent advances in antibacterial superhydrophobic coatings[J]. Advanced Engineering Materials,2022,24(4):2101053. doi: 10.1002/adem.202101053
    [53]
    SAHIN F, CELIK N, CEYLAN A, et al. Antifouling superhydrophobic surfaces with bactericidal and SERS activity[J]. Chemical Engineering Journal,2022,431:133445. doi: 10.1016/j.cej.2021.133445
    [54]
    NADERIZADEH S, DANTE S, PICONE P, et al. Bioresin-based superhydrophobic coatings with reduced bacterial adhesion[J]. Journal of Colloid and Interface Science,2020,574:20-32. doi: 10.1016/j.jcis.2020.04.031
    [55]
    CHAN Y, WU X H, CHIENG B W, et al. Superhydrophobic nanocoatings as intervention against biofilm-associated bacterial infections[J]. Nanomaterials,2021,11(4):1046. doi: 10.3390/nano11041046
    [56]
    ZHAO S, YANG X, XU Y, et al. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions[J]. Nano Research,2022,15(6):5245-5255. doi: 10.1007/s12274-022-4136-6
    [57]
    YOHE S T, KOPECHEK J A, PORTER T M, et al. Triggered drug release from superhydrophobic meshes using high-intensity focused ultrasound[J]. Advanced Healthcare Materials,2013,2(9):1204-1208. doi: 10.1002/adhm.201200381
    [58]
    ZHOU J, FRANK M A, YANG Y, et al. A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger[J]. Materials Science and Engineering: C,2018,82:277-283. doi: 10.1016/j.msec.2017.08.066
    [59]
    WANG J, COLSON Y L, GRINSTAFF M W. Tension-activated delivery of small molecules and proteins from superhydrophobic composites[J]. Advanced Healthcare Materials,2018,7(7):1701096. doi: 10.1002/adhm.201701096
    [60]
    DARMANIN T, GUITTARD F. Recent advances in the potential applications of bioinspired superhydrophobic materials[J]. Journal of Materials Chemistry A,2014,2(39):16319-16359. doi: 10.1039/C4TA02071E
    [61]
    WANG X, LIU Y, CHENG H, et al. Surface wettability for skin-interfaced sensors and devices[J]. Advanced Functional Materials,2022,32(27):2200260. doi: 10.1002/adfm.202200260
    [62]
    LIN J, CAI X, LIU Z, et al. Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on cassie-baxter wetting state[J]. Advanced Functional Materials,2020,30(23):2000398. doi: 10.1002/adfm.202000398
    [63]
    CHU Z, JIAO W, LI J, et al. A novel wrinkle-gradient strain sensor with anti-water interference and high sensing performance[J]. Chemical Engineering Journal,2021,421:129873. doi: 10.1016/j.cej.2021.129873
    [64]
    JIA S, DENG S, QING Y, et al. A coating-free superhydrophobic sensing material for full-range human motion and microliter droplet impact detection[J]. Chemical Engineering Journal,2021,410:128418. doi: 10.1016/j.cej.2021.128418
    [65]
    WANG L, XIA M, WANG D, et al. Bioinspired superhydrophobic and durable octadecanoic acid/Ag nanoparticle-decorated rubber composites for high-performance strain sensors[J]. ACS Sustainable Chemistry & Engineering,2021,9(21):7245-7254.
    [66]
    LIU L, JIAO Z, ZHANG J, et al. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications[J]. ACS Applied Materials & Interfaces,2021,13(1):1967-1978.
    [67]
    WANG P, WEI W, LI Z, et al. A superhydrophobic fluorinated PDMS composite as a wearable strain sensor with excellent mechanical robustness and liquid impalement resistance[J]. Journal of Materials Chemistry A,2020,8(6):3509-3516. doi: 10.1039/C9TA13281C
    [68]
    LIN L, CHOI Y, CHEN T, et al. Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring[J]. Chemical Engineering Journal,2021,419:129513. doi: 10.1016/j.cej.2021.129513
    [69]
    CHU Z, JIAO W, HUANG Y, et al. Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring[J]. Journal of Materials Chemistry A,2021,9(15):9634-9643. doi: 10.1039/D0TA11959H
    [70]
    WANG L, WANG H, HUANG X, et al. Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property[J]. Journal of Materials Chemistry A,2018,6(47):24523-24533. doi: 10.1039/C8TA07847E
    [71]
    ZHANG J, ZHANG Y, YONG J, et al. Femtosecond laser direct weaving bioinspired superhydrophobic/hydrophilic micro-pattern for fog harvesting[J]. Optics & Laser Technology,2022,146:107593.
    [72]
    ISHIZAKI T, SAITO N, TAKAI O. Correlation of cell adhesive behaviors on superhydrophobic, superhydrophilic, and micropatterned superhydrophobic/superhydrophilic surfaces to their surface chemistry[J]. Langmuir,2010,26(11):8147-8154. doi: 10.1021/la904447c
    [73]
    POPOVA A A, DEMIR K, HARTANTO T G, et al. Droplet-microarray on superhydrophobic-superhydrophilic patterns for high-throughput live cell screenings[J]. RSC Advances,2016,6(44):38263-38276. doi: 10.1039/C6RA06011K
    [74]
    SUN Y, SONG W, SUN X, et al. Inkjet-printing patterned chip on sticky superhydrophobic surface for high-efficiency single-cell array trapping and real-time observation of cellular apoptosis[J]. ACS Applied Materials & Interfaces,2018,10(37):31054-31060.
    [75]
    CHI J, ZHANG X, WANG Y, et al. Bio-inspired wettability patterns for biomedical applications[J]. Materials Horizons,2021,8(1):124-144. doi: 10.1039/D0MH01293A
    [76]
    UEDA E, LEVKIN P A. Emerging applications of superhydrophilic-superhydrophobic micropatterns[J]. Advanced Materials,2013,25(9):1234-1247. doi: 10.1002/adma.201204120
    [77]
    CHEN Y, XU L, MENG J, et al. Superwettable microchips with improved spot homogeneity toward sensitive biosensing[J]. Biosensors and Bioelectronics,2018,102:418-424. doi: 10.1016/j.bios.2017.11.036
    [78]
    WU T, XU T, CHEN Y, et al. Renewable superwettable biochip for miRNA detection[J]. Sensors and Actuators B: Chemical,2018,258:715-721. doi: 10.1016/j.snb.2017.11.109
    [79]
    FAN H, GUO Z. Bioinspired surfaces with wettability: Biomolecule adhesion behaviors[J]. Biomaterials Science,2020,8(6):1502-1535. doi: 10.1039/C9BM01729A
    [80]
    MALARA N, GENTILE F, COPPEDE N, et al. Superhydrophobic lab-on-chip measures secretome protonation state and provides a personalized risk assessment of sporadic tumour[J]. NPJ Precision Oncology,2018,2(1):26. doi: 10.1038/s41698-018-0069-7
    [81]
    SAJI V S. Recent progress in superhydrophobic and superamphiphobic coatings for magnesium and its alloys[J]. Journal of Magnesium and Alloys,2021,9(3):748-778. doi: 10.1016/j.jma.2021.01.005
    [82]
    SONG S, YAN H, CAI M, et al. Superhydrophobic composite coating for reliable corrosion protection of Mg alloy[J]. Materials & Design,2022,215:110433.
    [83]
    WEI D, WANG J, LIU Y, et al. Controllable superhydrophobic surfaces with tunable adhesion on Mg alloys by a simple etching method and its corrosion inhibition performance[J]. Chemical Engineering Journal,2021,404:126444. doi: 10.1016/j.cej.2020.126444
    [84]
    WANG L, XIAO X, LIU E, et al. Fabrication of superhydrophobic needle-like Ca-P coating with anti-fouling and anti-corrosion properties on AZ31 magnesium alloy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,620:126568. doi: 10.1016/j.colsurfa.2021.126568
    [85]
    ZHANG S, CAO D, XU L, et al. Corrosion resistance of a superhydrophobic dodecyltrimethoxysilane coating on magnesium hydroxide-pretreated magnesium alloy AZ31 by electrodeposition[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,625:126914. doi: 10.1016/j.colsurfa.2021.126914
    [86]
    ZHANG Y, FENG Y, MENG X, et al. The study on enhanced superhydrophobicity of magnesium hydroxide corrosion-resistant coating on AZ31B after 8 months[J]. Advanced Engineering Materials,2021,23(4):2001003. doi: 10.1002/adem.202001003
    [87]
    LI L, LI X, CHEN J, et al. One-step spraying method to construct superhydrophobic magnesium surface with extraordinary robustness and multi-functions[J]. Journal of Magnesium and Alloys,2021,9(2):668-675. doi: 10.1016/j.jma.2020.06.017
    [88]
    DING C, TAI Y, WANG D, et al. Superhydrophobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection[J]. Chemical Engineering Journal,2019,357:518-532. doi: 10.1016/j.cej.2018.09.133
    [89]
    GU R, SHEN J, HAO Q, et al. Harnessing superhydrophobic coatings for enhancing the surface corrosion resistance of magnesium alloys[J]. Journal of Materials Chemistry B,2021,9(48):9893-9899. doi: 10.1039/D1TB01974K
    [90]
    LI Q, BAO X, SUN J E, et al. Fabrication of superhydrophobic composite coating of hydroxyapatite/stearic acid on magnesium alloy and its corrosion resistance, antibacterial adhesion[J]. Journal of Materials Science,2021,56(8):5233-5249. doi: 10.1007/s10853-020-05592-5
    [91]
    ZHANG J, ZHAO X, WEI J, et al. Superhydrophobic coatings with photothermal self-healing chemical composition and microstructure for efficient corrosion protection of magnesium alloy[J]. Langmuir,2021,37(45):13527-13536. doi: 10.1021/acs.langmuir.1c02355
    [92]
    林彦萍, 王庆成, 吕恕位, 等. 超疏水表面材料在生物医学检测领域研究进展[J]. 表面技术, 2022, 51(10):113-127.

    LIN Yanping, WANG Qingcheng, LV Shuwei, et al. Research progress of superhydrophobic surface materials in biomedical detection[J]. Surface Technology,2022,51(10):113-127(in Chinese).
    [93]
    HAN Y, HAN Y, SUN J, et al. Controllable nanoparticle aggregation through a superhydrophobic laser-induced graphene dynamic system for surface-enhanced Raman scattering detection[J]. ACS Applied Materials & Interfaces,2022,14(2):3504-3514.
    [94]
    LUO X, PAN R, CAI M, et al. Atto-Molar Raman detection on patterned superhydrophilic-superhydrophobic platform via localizable evaporation enrichment[J]. Sensors and Actuators B: Chemical,2021,326:128826. doi: 10.1016/j.snb.2020.128826
    [95]
    WANG Y, LIU F, YANG Y, et al. Droplet evaporation-induced analyte concentration toward sensitive biosensing[J]. Materials Chemistry Frontiers,2021,5(15):5639-5652. doi: 10.1039/D1QM00500F
    [96]
    XU T, XU L P, ZHANG X, et al. Bioinspired superwettable micropatterns for biosensing[J]. Chemical Society Reviews,2019,48(12):3153-3165. doi: 10.1039/C8CS00915E
    [97]
    HE X, XU T, GU Z, et al. Flexible and superwettable bands as a platform toward sweat sampling and sensing[J]. Analytical Chemistry,2019,91(7):4296-4300. doi: 10.1021/acs.analchem.8b05875
    [98]
    XIA Y, CHEN H, LI J, et al. Acoustic droplet-assisted superhydrophilic-superhydrophobic microarray platform for high-throughput screening of patient-derived tumor spheroids[J]. ACS Applied Materials & Interfaces,2021,13(20):23489-23501.
    [99]
    WANG P, HAYASHI T, MENG Q, et al. Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode[J]. Small,2017,13(4):1601250. doi: 10.1002/smll.201601250
    [100]
    LUO J, YU H, LU B, et al. Superhydrophobic biological fluid-repellent surfaces: Mechanisms and applications[J]. Small Methods,2022,6(12):2201106. doi: 10.1002/smtd.202201106
    [101]
    HAN K, PARK T Y, YONG K, et al. Combinational biomimicking of lotus leaf, mussel, and sandcastle worm for robust superhydrophobic surfaces with biomedical multifunctionality: Antithrombotic, antibiofouling, and tissue closure capabilities[J]. ACS Applied Materials & Interfaces,2019,11(10):9777-9785.
    [102]
    ZHUO Y, CHENG X, FANG H, et al. Medical gloves modified by a one-minute spraying process with blood-repellent, antibacterial and wound-healing abilities[J]. Biomaterials Science,2022,10(4):939-946. doi: 10.1039/D1BM01212F
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (784) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return