Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
ZHAO Hang, YUAN Shiyu, WANG Yitong, et al. Research progress on large-area all-inorganic perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5447-5465. doi: 10.13801/j.cnki.fhclxb.20230607.001
Citation: ZHAO Hang, YUAN Shiyu, WANG Yitong, et al. Research progress on large-area all-inorganic perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5447-5465. doi: 10.13801/j.cnki.fhclxb.20230607.001

Research progress on large-area all-inorganic perovskite solar cells

doi: 10.13801/j.cnki.fhclxb.20230607.001
Funds:  National Natural Science Foundation of China Youth Fund Project (52102247); Hebei Science Foundation Youth Fund Project (F2022209010); Tangshan Science and Technology Plan Project (21130207C)
  • Received Date: 2023-03-29
  • Accepted Date: 2023-05-29
  • Rev Recd Date: 2023-05-05
  • Available Online: 2023-06-08
  • Publish Date: 2023-10-15
  • In recent years, all-inorganic perovskite solar cells have become a hot topic in the photovoltaic field due to their excellent optoelectronic properties and outstanding thermal stability. This type of cell has achieved a photovoltaic conversion efficiency (PCE) of 21.15%, and further improvements are expected. However, the effective area of currently efficient all-inorganic perovskite cells is relatively small, mostly around 0.1 cm2, and the PCE of large-area all-inorganic perovskite solar cells will decrease significantly with an increase in effective area. The preparation of large-area cells is crucial for the commercial application of all-inorganic perovskite solar cells. In order to make all-inorganic perovskite materials better apply in the photovoltaic field, it is the simplest and most effective method to construct a multi-component composite structure and adjust the preparation process of all-inorganic perovskite. This article provides a systematic review of the progress in large-area all-inorganic perovskite solar cells, summarizing the achievements of all-inorganic perovskite solar cells with larger area. An analysis of the current status of large-area all-inorganic perovskite solar cells is also presented, and systematic summaries are given for the process of preparing large-area perovskite solar cells and strategies for optimizing cell performance. Finally, the future development trends in this field are discussed.

     

  • loading
  • [1]
    LI J, XIA R, QI W, et al. Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization[J]. Journal of Power Sources,2021,485:229313. doi: 10.1016/j.jpowsour.2020.229313
    [2]
    YU J, LIU G, CHEN C, et al. Perovskite CsPbBr3 crystals: Growth and applications[J]. Journal of Materials Chemistry C,2020,8(19):6326-6341. doi: 10.1039/D0TC00922A
    [3]
    CHENG Z, LIN J. Layered organic-inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering[J]. CrystEngComm,2010,12(10):2646-2662. doi: 10.1039/c001929a
    [4]
    FENG L M, JIANG L Q, ZHU M, et al. Formability of ABO3 cubic perovskites[J]. Journal of Physics and Chemistry of Solids,2008,69(4):967-974. doi: 10.1016/j.jpcs.2007.11.007
    [5]
    BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances,2019,5(2):eaav0693. doi: 10.1126/sciadv.aav0693
    [6]
    LI C, LU X, DING W, et al. Formability of ABX3 (X= F, Cl, Br, I) halide perovskites[J]. Acta Crystallographica Section B: Structural Science,2008,64(6):702-707. doi: 10.1107/S0108768108032734
    [7]
    YANG Z, BABU B H, WU S, et al. Review on practical interface engineering of perovskite solar cells: From efficiency to stability[J]. Solar RRL,2020,4(2):1900257. doi: 10.1002/solr.201900257
    [8]
    WANG J, CHE Y, DUAN Y, et al. 21.15%-efficiency and stable γ-CsPbI3 perovskite solar cells enabled by an acyloin ligand[J]. Advanced Materials,2023,35(12):2210223. doi: 10.1002/adma.202210223
    [9]
    SON D Y, IM J H, KIM H S, et al. 11% efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system[J]. The Journal of Physical Chemistry C,2014,118(30):16567-16573. doi: 10.1021/jp412407j
    [10]
    LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature,2013,501(7467):395-398. doi: 10.1038/nature12509
    [11]
    CHOI J J, YANG X, NORMAN Z M, et al. Structure of methylammonium lead iodide within mesoporous titanium dioxide: Active material in high-performance perovskite solar cells[J]. Nano Letters,2014,14(1):127-133. doi: 10.1021/nl403514x
    [12]
    YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science,2015,348(6240):1234-1237. doi: 10.1126/science.aaa9272
    [13]
    EPERON G E, PATERNO G M, SUTTON R J, et al. Inorganic caesium lead iodide perovskite solar cells[J]. Journal of Materials Chemistry A,2015,3(39):19688-19695. doi: 10.1039/C5TA06398A
    [14]
    CHEN C Y, LIN H Y, CHIANG K M, et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%[J]. Advanced Materials,2017,29(12):1605290. doi: 10.1002/adma.201605290
    [15]
    SANEHIRA E M, MARSHALL A R, CHRISTIANS J A, et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells[J]. Science Advances,2017,3(10):eaao4204. doi: 10.1126/sciadv.aao4204
    [16]
    LEI J, GAO F, WANG H, et al. Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation[J]. Solar Energy Materials and Solar Cells,2018,187:1-8. doi: 10.1016/j.solmat.2018.07.009
    [17]
    ZENG Q, ZHANG X, FENG X, et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V[J]. Advanced Materials,2018,30(9):1705393. doi: 10.1002/adma.201705393
    [18]
    YIN G, ZHAO H, JIANG H, et al. Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency[J]. Advanced Functional Materials,2018,28(39):1803269. doi: 10.1002/adfm.201803269
    [19]
    LI B, ZHANG Y, FU L, et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells[J]. Nature Communications,2018,9(1):1076. doi: 10.1038/s41467-018-03169-0
    [20]
    ZHU W, ZHANG Z, CHAI W, et al. Band alignment engineering towards high efficiency carbon-based inorganic planar CsPbIBr2 perovskite solar cells[J]. ChemSusChem,2019,12(10):2318-2325. doi: 10.1002/cssc.201900611
    [21]
    ZHAO H, XU J, ZHOU S, et al. Preparation of tortuous 3D γ-CsPbI3 films at low temperature by CaI2 as dopant for highly efficient perovskite solar cells[J]. Advanced Functional Materials,2019,29(27):1808986.
    [22]
    LAU C F J, WANG Z, SAKAI N, et al. Fabrication of efficient and stable CsPbI3 perovskite solar cells through cation exchange process[J]. Advanced Energy Materials,2019,9(36):1901685. doi: 10.1002/aenm.201901685
    [23]
    YAO Z, JIN Z, ZHANG X, et al. Pseudohalide (SCN)-doped CsPbI3 for high-performance solar cells[J]. Journal of Materials Chemistry C,2019,7(44):13736-13742. doi: 10.1039/C9TC04851K
    [24]
    ZHANG C, WANG K, WANG Y, et al. Low-temperature crystallization of CsPbIBr2 perovskite for high performance solar cells[J]. Solar RRL,2020,4(10):2000254. doi: 10.1002/solr.202000254
    [25]
    LI H, YIN L. Efficient bidentate molecules passivation strategy for high-performance and stable inorganic CsPbI2Br perovskite solar cells[J]. Solar RRL,2020,4(10):2000268. doi: 10.1002/solr.202000268
    [26]
    YANG S, LIU W, HAN Y, et al. 2D Cs2PbI2Cl2 nanosheets for holistic passivation of inorganic CsPbI2Br perovskite solar cells for improved efficiency and stability[J]. Advanced Energy Materials,2020,10(46):2002882. doi: 10.1002/aenm.202002882
    [27]
    PATIL J V, MALI S S, HONG C K. A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency[J]. Solar RRL,2020,4(7):2000164. doi: 10.1002/solr.202000164
    [28]
    HEO J H, ZHANG F, XIAO C, et al. Efficient and stable graded CsPbI3−xBrx perovskite solar cells and submodules by orthogonal processable spray coating[J]. Joule,2021,5(2):481-494. doi: 10.1016/j.joule.2020.12.010
    [29]
    YOON S M, MIN H, KIM J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells[J]. Joule,2021,5(1):183-196. doi: 10.1016/j.joule.2020.11.020
    [30]
    GUO Q, DUAN J, ZHANG J, et al. Universal dynamic liquid interface for healing perovskite solar cells[J]. Advanced Materials,2022,34(26):2202301. doi: 10.1002/adma.202202301
    [31]
    JEONG W J, HA S R, JANG J W, et al. Simple-structured low-cost dopant-free hole-transporting polymers for high-stability CsPbI2Br perovskite solar cells[J]. ACS Applied Materials & Interfaces,2022,14(11):13400-13409.
    [32]
    CHEN W, SUN Z, GUAN X, et al. A general low-temperature strategy to prepare high-quality metal sulfides charge-transporting layers for all-inorganic CsPbI2Br perovskite solar cells[J]. Solar RRL,2022,6(7):2200098. doi: 10.1002/solr.202200098
    [33]
    XU J, CUI J, YANG S, et al. Stable high-efficiency CsPbI2Br solar cells by designed passivation using multifunctional 2D perovskite[J]. Advanced Functional Materials,2022,32(33):2202829. doi: 10.1002/adfm.202202829
    [34]
    WANG S, WANG P, SHI B, et al. Inorganic perovskite surface reconfiguration for stable inverted solar cell with 20.38% efficiency and its application in tandem devices[J]. Advanced Materials,2023,35(28):2300581. doi: 10.1002/adma.202300581
    [35]
    MA Q, HUANG S, WEN X, et al. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation[J]. Advanced Energy Materials,2016,6(7):1502202. doi: 10.1002/aenm.201502202
    [36]
    MA Q S, HUANG S J, CHEN S, et al. The effect of stoichiometry on the stability of inorganic cesium lead mixed-halide perovskites solar cells[J]. The Journal of Physical Chemistry C,2017,121(36):19642-19649. doi: 10.1021/acs.jpcc.7b06268
    [37]
    LAU C F J, ZHANG M, DENG X, et al. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells[J]. ACS Energy Letters,2017,2(10):2319-2325. doi: 10.1021/acsenergylett.7b00751
    [38]
    NAM J K, CHAI S U, CHA W, et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells[J]. Nano Letters,2017,17(3):2028-2033. doi: 10.1021/acs.nanolett.7b00050
    [39]
    ZHANG T, DAR M I, LI G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells[J]. Science Advances,2017,3(9):e1700841. doi: 10.1126/sciadv.1700841
    [40]
    LI Y, DUAN J, YUAN H, et al. Lattice modulation of alkali metal cations doped Cs1−xRxPbBr3 halides for inorganic perovskite solar cells[J]. Solar RRL,2018,2(10):1800164. doi: 10.1002/solr.201800164
    [41]
    LIANG J, ZHAO P, WANG C, et al. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability[J]. Journal of the American Chemical Society,2017,139(40):14009-14012. doi: 10.1021/jacs.7b07949
    [42]
    JIANG Y, YUAN J, NI Y, et al. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics[J]. Joule,2018,2(7):1356-1368. doi: 10.1016/j.joule.2018.05.004
    [43]
    SUBHANI W S, WANG K, DU M, et al. Interface-modification-induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells[J]. Advanced Energy Materials,2019,9(21):1803785. doi: 10.1002/aenm.201803785
    [44]
    MURUGADOSS G, THANGAMUTHU R. Metals doped cesium based all inorganic perovskite solar cells: Investigations on structural, morphological and optical properties[J]. Solar Energy,2019,179:151-163. doi: 10.1016/j.solener.2018.12.065
    [45]
    WANG H, LI H, CAO S, et al. Interface modulator of ultrathin magnesium oxide for low-temperature-processed inorganic CsPbIBr2 perovskite solar cells with efficiency over 11%[J]. Solar RRL,2020,4(9):2000226. doi: 10.1002/solr.202000226
    [46]
    LIU C, HE J, WU M, et al. All-inorganic CsPbI2Br perovskite solar cell with open-circuit voltage over 1.3 V by balancing electron and hole transport[J]. Solar RRL,2020,4(7):2000016. doi: 10.1002/solr.202000016
    [47]
    ZHOU D, HUANG J, LIU J, et al. Dual passivation strategy for high efficiency inorganic CsPbI2Br solar cells[J]. Solar RRL,2021,5(5):2100112.
    [48]
    PU X, YANG J, WANG T, et al. Gadolinium-incorporated CsPbI2Br for boosting efficiency and long-term stability of all-inorganic perovskite solar cells[J]. Journal of Energy Chemistry,2022,70:9-17. doi: 10.1016/j.jechem.2022.02.004
    [49]
    YU G, JIANG K J, GU W M, et al. Vacuum-assisted thermal annealing of CsPbI3 for highly stable and efficient inorganic perovskite solar cells[J]. Angewandte Chemie International Edition,2022,61(27):e202203778.
    [50]
    ZHANG H, XIANG W, ZUO X, et al. Fluorine-containing passivation layer via surface chelation for inorganic perovskite solar cells[J]. Angewandte Chemie,2023,135(6):e202216634.
    [51]
    HEO J H, ZHANG F, PARK J K, et al. Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable pin-structured CsPbI3 perovskite solar cells[J]. Joule,2022,6(7):1672-1688. doi: 10.1016/j.joule.2022.05.013
    [52]
    ZHANG Q, LIU H, TAN X, et al. Suppressing "Coffee ring effect" to deposit high-quality CsPbI3 perovskite films by drop casting[J]. Chemical Engineering Journal,2023,454:140147. doi: 10.1016/j.cej.2022.140147
    [53]
    TAN S, TAN C, CUI Y, et al. Constructing interfacial gradient heterostructure enables efficient CsPbI3 perovskite solar cells and printed minimodules[J]. Advanced Materials,2023,35(28):2301879. doi: 10.1002/adma.202301879
    [54]
    FASSL P, TERNES S, LAMI V, et al. Effect of crystal grain orientation on the rate of ionic transport in perovskite polycrystalline thin films[J]. ACS Applied Materials & Interfaces,2018,11(2):2490-2499.
    [55]
    ZHOU Y, LUO X, YANG J, et al. Application of quantum dot interface modification layer in perovskite solar cells: Progress and perspectives[J]. Nanomaterials,2022,12(12):2102. doi: 10.3390/nano12122102
    [56]
    ZHENG L, ZHANG D, MA Y, et al. Morphology control of the perovskite films for efficient solar cells[J]. Dalton Transactions,2015,44(23):10582-10593. doi: 10.1039/C4DT03869J
    [57]
    KIM J, YUN J S, CHO Y, et al. Overcoming the challenges of large-area high-efficiency perovskite solar cells[J]. ACS Energy Letters,2017,2(9):1978-1984. doi: 10.1021/acsenergylett.7b00573
    [58]
    DONG C, HAN X, ZHAO Y, et al. A green anti-solvent process for high performance carbon-based CsPbI2Br all-inorganic perovskite solar cell[J]. Solar RRL,2018,2(9):1800139. doi: 10.1002/solr.201800139
    [59]
    YU Y T, YANG S H, CHOU L H, et al. One-step spray-coated all-inorganic CsPbI2Br perovskite solar cells[J]. ACS Applied Energy Materials,2021,4(6):5466-5474. doi: 10.1021/acsaem.1c00054
    [60]
    SWARTWOUT R, HOERANTNER M T, BULOVIC V. Scalable deposition methods for large-area production of perovskite thin films[J]. Energy & Environmental Materials,2019,2(2):119-145.
    [61]
    HAMUKWAYA S L, HAO H, ZHAO Z, et al. A review of recent developments in preparation methods for large-area perovskite solar cells[J]. Coatings,2022,12(2):252. doi: 10.3390/coatings12020252
    [62]
    LI X, BI D, YI C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science,2016,353(6294):58-62. doi: 10.1126/science.aaf8060
    [63]
    AAMIR M, SHER M, KHAN M D, et al. Controlled synthesis of all inorganic CsPbBr2I perovskite by non-template and aerosol assisted chemical vapour deposition[J]. Materials Letters,2017,190:244-247. doi: 10.1016/j.matlet.2017.01.013
    [64]
    ZHANG Y, LUO L, HUA J, et al. Moisture assisted CsPbBr3 film growth for high-efficiency, all-inorganic solar cells prepared by a multiple sequential vacuum deposition method[J]. Materials Science in Semiconductor Processing,2019,98:39-43. doi: 10.1016/j.mssp.2019.03.021
    [65]
    ZHANG L, YUAN F, DONG H, et al. One-step co-evaporation of all-inorganic perovskite thin films with room-temperature ultralow amplified spontaneous emission threshold and air stability[J]. ACS Applied Materials & Interfaces,2018,10(47):40661-40671.
    [66]
    ULLAH S, WANG J, YANG P, et al. Evaporation deposition strategies for all-inorganic CsPb(I1−xBrx)3 perovskite solar cells: Recent advances and perspectives[J]. Solar RRL,2021,5(8):2100172. doi: 10.1002/solr.202100172
    [67]
    PARK C G, CHOI W G, NA S, et al. All-inorganic perovskite CsPbI2Br through co-evaporation for planar heterojunction solar cells[J]. Electronic Materials Letters,2019,15:56-60. doi: 10.1007/s13391-018-0095-1
    [68]
    GAO L, YANG G. Organic-inorganic halide perovskites: From crystallization of polycrystalline films to solar cell applications[J]. Solar RRL,2020,4(2):1900200. doi: 10.1002/solr.201900200
    [69]
    WANG Q, ZHENG X, DENG Y, et al. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films[J]. Joule,2017,1(2):371-382. doi: 10.1016/j.joule.2017.07.017
    [70]
    SHIN D, KANG D, JEONG J, et al. Unraveling the charge extraction mechanism of perovskite solar cells fabricated with two-step spin coating: Interfacial energetics between methylammonium lead iodide and C60[J]. The Journal of Physical Chemistry Letters,2017,8(21):5423-5429. doi: 10.1021/acs.jpclett.7b02562
    [71]
    LARSON R G, REHG T J. Spin coating[M]//Liquid Film Coating: Scientific Principles and Their Technological Implications. Berlin: Springer, 1997: 709-734.
    [72]
    XU L, KARUNAKARAN R G, GUO J, et al. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles[J]. ACS Applied Materials & Interfaces,2012,4(2):1118-1125.
    [73]
    LEE J W, PARK N G. Two-step deposition method for high-efficiency perovskite solar cells[J]. MRS Bulletin,2015,40(8):654-659. doi: 10.1557/mrs.2015.166
    [74]
    SHALAN A E. Challenges and approaches towards upscaling the assembly of hybrid perovskite solar cells[J]. Materials Advances,2020,1(3):292-309. doi: 10.1039/D0MA00128G
    [75]
    DAI X, XU K, WEI F. Recent progress in perovskite solar cells: The perovskite layer[J]. Beilstein Journal of Nanotechnology,2020,11(1):51-60.
    [76]
    TIAN J, WANG J, XUE Q, et al. Composition engineering of all-inorganic perovskite film for efficient and operationally stable solar cells[J]. Advanced Functional Materials,2020,30(28):2001764. doi: 10.1002/adfm.202001764
    [77]
    SILVA FILHO J M C, ERMAKOV V A, MARQUES F C. Perovskite thin film synthesised from sputtered lead sulphide[J]. Scientific Reports,2018,8(1):1563. doi: 10.1038/s41598-018-19746-8
    [78]
    ZHAO Y, MA F, GAO F, et al. Research progress in large-area perovskite solar cells[J]. Photonics Research,2020,8(7):A1-A15. doi: 10.1364/PRJ.392996
    [79]
    DAS S, YANG B, GU G, et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing[J]. ACS Photonics,2015,2(6):680-686. doi: 10.1021/acsphotonics.5b00119
    [80]
    ZHANG Z, BA Y, CHEN D, et al. Generic water-based spray-assisted growth for scalable high-efficiency carbon-electrode all-inorganic perovskite solar cells[J]. iScience,2021,24(11):103365. doi: 10.1016/j.isci.2021.103365
    [81]
    BING J, HUANG S, HO-BAILLIE A W Y. A review on halide perovskite film formation by sequential solution processing for solar cell applications[J]. Energy Technology,2020,8(4):1901114. doi: 10.1002/ente.201901114
    [82]
    DING X, LIU J, HARRIS T A L. A review of the operating limits in slot die coating processes[J]. AIChE Journal,2016,62(7):2508-2524. doi: 10.1002/aic.15268
    [83]
    GAO L, HUANG K, LONG C, et al. Fully slot-die-coated perovskite solar cells in ambient condition[J]. Applied Physics A,2020,126:1-7. doi: 10.1007/s00339-019-3176-6
    [84]
    WU W Q, YANG Z, RUDD P N, et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells[J]. Science Advances,2019,5(3):eaav8925. doi: 10.1126/sciadv.aav8925
    [85]
    ZHAO Y, DENG Q, GUO R, et al. Sputtered Ga-doped SnOx electron transport layer for large-area all-inorganic perovskite solar cells[J]. ACS Applied Materials & Interfaces,2020,12(49):54904-54915.
    [86]
    RAZZA S, DI GIACOMO F, MATTEOCCI F, et al. Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process[J]. Journal of Power Sources,2015,277:286-291. doi: 10.1016/j.jpowsour.2014.12.008
    [87]
    LIANG C, LI P, GU H, et al. One-step inkjet printed perovskite in air for efficient light harvesting[J]. Solar RRL,2018,2(2):1700217. doi: 10.1002/solr.201700217
    [88]
    LI P, LIANG C, BAO B, et al. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells[J]. Nano Energy,2018,46:203-211. doi: 10.1016/j.nanoen.2018.01.049
    [89]
    ZHANG L, CHEN S, ZENG J, et al. Inkjet-printing controlled phase evolution boosts the efficiency of hole transport material free and carbon-based CsPbBr3 perovskite solar cells exceeding 9%[J]. Energy & Environmental Materials,2022:e12543. doi: 10.1002/eem2.12543
    [90]
    LI Z, LI P, CHEN G, et al. Ink engineering of inkjet printing perovskite[J]. ACS Applied Materials & Interfaces,2020,12(35):39082-39091.
    [91]
    LEE J W, KIM H S, PARK N G. Lewis acid-base adduct approach for high efficiency perovskite solar cells[J]. Accounts of Chemical Research,2016,49(2):311-319. doi: 10.1021/acs.accounts.5b00440
    [92]
    SALHI B, WUDIL Y S, HOSSAIN M K, et al. Review of recent developments and persistent challenges in stability of perovskite solar cells[J]. Renewable and Sustainable Energy Reviews,2018,90:210-222. doi: 10.1016/j.rser.2018.03.058
    [93]
    AVILA J, MOMBLONA C, BOIX P P, et al. Vapor-deposited perovskites: The route to high-performance solar cell production?[J]. Joule,2017,1(3):431-442. doi: 10.1016/j.joule.2017.07.014
    [94]
    PINSUWAN K, BOONTHUM C, SUPASAI T, et al. Solar perovskite thin films with enhanced mechanical, thermal, UV, and moisture stability via vacuum-assisted deposition[J]. Journal of Materials Science,2020,55(8):3484-3494. doi: 10.1007/s10853-019-04199-9
    [95]
    TEUSCHER J, ULIANOV A, MUNTENER O, et al. Control and study of the stoichiometry in evaporated perovskite solar cells[J]. ChemSusChem,2015,8(22):3847-3852. doi: 10.1002/cssc.201500972
    [96]
    CHEN X, CAO H, YU H, et al. Large-area, high-quality organic-inorganic hybrid perovskite thin films via a controlled vapor-solid reaction[J]. Journal of Materials Chemistry A,2016,4(23):9124-9132. doi: 10.1039/C6TA03180C
    [97]
    ASSADI M K, BAKHODA S, SAIDUR R, et al. Recent progress in perovskite solar cells[J]. Renewable and Sustainable Energy Reviews,2018,81:2812-2822. doi: 10.1016/j.rser.2017.06.088
    [98]
    TAVAKOLI M M, GU L, GAO Y, et al. Fabrication of efficient planar perovskite solar cells using a one-step che-mical vapor deposition method[J]. Scientific Reports,2015,5(1):14083. doi: 10.1038/srep14083
    [99]
    LUO P, LIU Z, XIA W, et al. Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions[J]. ACS Applied Materials & Interfaces,2015,7(4):2708-2714.
    [100]
    LIANG G, LAN H, FAN P, et al. Highly uniform large-area (100 cm2) perovskite CH3NH3PbI3 thin-films prepared by single-source thermal evaporation[J]. Coatings,2018,8(8):256. doi: 10.3390/coatings8080256
    [101]
    LIU X, TAN X, LIU Z, et al. Sequentially vacuum evaporated high-quality CsPbBr3 films for efficient carbon-based planar heterojunction perovskite solar cells[J]. Journal of Power Sources,2019,443:227269. doi: 10.1016/j.jpowsour.2019.227269
    [102]
    NASI L, CALESTANI D, MEZZADRI F, et al. All-inorganic CsPbBr3 perovskite films prepared by single source thermal ablation[J]. Frontiers in Chemistry,2020,8:313. doi: 10.3389/fchem.2020.00313
    [103]
    BECKER P, MARQUEZ J A, JUST J, et al. Low temperature synthesis of stable γ-CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation[J]. Advanced Energy Materials,2019,9(22):1900555. doi: 10.1002/aenm.201900555
    [104]
    LI J, GAO R, GAO F, et al. Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation[J]. Journal of Alloys and Compounds,2020,818:152903. doi: 10.1016/j.jallcom.2019.152903
    [105]
    WANG S, LI X, WU J, et al. Fabrication of efficient metal halide perovskite solar cells by vacuum thermal evaporation: A progress review[J]. Current Opinion in Electrochemistry,2018,11:130-140. doi: 10.1016/j.coelec.2018.10.006
    [106]
    GAO L L, LI C X, LI C J, et al. Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air[J]. Journal of Materials Chemistry A,2017,5(4):1548-1557. doi: 10.1039/C6TA09565H
    [107]
    DENG Y, PENG E, SHAO Y, et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers[J]. Energy & Environmental Science,2015,8(5):1544-1550.
    [108]
    ZHOU Y, YANG M, WU W, et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells[J]. Journal of Materials Chemistry A,2015,3(15):8178-8184. doi: 10.1039/C5TA00477B
    [109]
    COTELLA G, BAKER J, WORSLEY D, et al. One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications[J]. Solar Energy Materials and Solar Cells,2017,159:362-369. doi: 10.1016/j.solmat.2016.09.013
    [110]
    DING B, GAO L, LIANG L, et al. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method[J]. ACS Applied Materials & Interfaces,2016,8(31):20067-20073.
    [111]
    WANG H, SUN J, GU Y, et al. Solvent-engineering-processed CsPbIBr2 inorganic perovskite solar cells with efficiency of ~11%[J]. Solar Energy Materials and Solar Cells,2022,238:111640. doi: 10.1016/j.solmat.2022.111640
    [112]
    ZHANG Z, HE F, ZHU W, et al. Suppressing intrinsic self-doping of CsPbIBr2 films for high-performance all-inorganic, carbon-based perovskite solar cells[J]. Sustainable Energy & Fuels,2020,4(9):4506-4515.
    [113]
    PARK N G. Research direction toward scalable, stable, and high efficiency perovskite solar cells[J]. Advanced Energy Materials,2020,10(13):1903106. doi: 10.1002/aenm.201903106
    [114]
    CHEN Y, ZHANG L, ZHANG Y, et al. Large-area perovskite solar cells—A review of recent progress and issues[J]. RSC Advances,2018,8(19):10489-10508. doi: 10.1039/C8RA00384J
    [115]
    VAYNZOF Y. The future of perovskite photovoltaics—Thermal evaporation or solution processing?[J]. Advanced Energy Materials,2020,10(48):2003073. doi: 10.1002/aenm.202003073
    [116]
    DING J, DUAN J, GUO C, et al. Toward charge extraction in all-inorganic perovskite solar cells by interfacial engineering[J]. Journal of Materials Chemistry A,2018,6(44):21999-22004. doi: 10.1039/C8TA02522C
    [117]
    YU B, SHI J, TAN S, et al. Efficient (> 20%) and stable all-inorganic cesium lead triiodide solar cell enabled by thiocyanate molten salts[J]. Angewandte Chemie International Edition,2021,60(24):13436-13443. doi: 10.1002/anie.202102466
    [118]
    HISHIMONE P N, NAGAI H, SATO M. Methods of fabricating thin films for energy materials and devices[M]//Lithium-ion Batteries-Thin Film for Energy Materials and Devices. London: IntechOpen, 2020: 9-30.
    [119]
    CHEN C L, ZHANG S S, LIU T L, et al. Improved open-circuit voltage and ambient stability of CsPbI2Br perovskite solar cells by incorporating CH3NH3Cl[J]. Rare Metals,2020,39:131-138. doi: 10.1007/s12598-019-01341-z
    [120]
    LIU W, RAZA H, HU X, et al. Key bottlenecks and distinct contradictions in fast commercialization of perovskite solar cells[J]. Materials Futures,2023,2:012103. doi: 10.1088/2752-5724/acba35
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (806) PDF downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return