Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WANG Yitong, ZOU Cunlei, LI Changming, et al. Research progress of high performance copper matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5542-5553. doi: 10.13801/j.cnki.fhclxb.20230523.003
Citation: WANG Yitong, ZOU Cunlei, LI Changming, et al. Research progress of high performance copper matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5542-5553. doi: 10.13801/j.cnki.fhclxb.20230523.003

Research progress of high performance copper matrix composites

doi: 10.13801/j.cnki.fhclxb.20230523.003
Funds:  National Natural Science Foundation of China (52171134; 51901033); Natural Science Foundation of Liaoning Province (2020-BS-207); Dalian Science and Technology Innovation Foundation of Applied Basic Research (2022JJ12GX039); Dalian Outstanding Young Scientific and Technological Talents Project (2022RY14)
  • Received Date: 2023-03-09
  • Accepted Date: 2023-05-17
  • Rev Recd Date: 2023-05-14
  • Available Online: 2023-05-24
  • Publish Date: 2023-10-15
  • Copper and copper alloys are widely used in electrical contact materials, electronic packaging materials, heat exchange materials and other fields because of their high electrical conductivity, thermal conductivity, easy machinability and corrosion resistance. However, the contradiction between strength, electrical conductivity and thermal conductivity in copper alloys limits its development. Copper matrix composites can improve the strength of materials by strengthening phase, avoid serious lattice distortion to copper matrix, and maximize the conductivity of materials, thus obtaining materials with excellent strength-resistance ratio. Therefore, copper matrix composites are an important development direction of high performance copper materials. In this paper, the main preparation methods of high performance copper matrix composites are summarized, and the reinforcing phase of composites, its characteristics and development direction are summarized. The main research progress and its application status in rail transit, electrics and electronics, military industry are described, and the future development direction of this material is prospected, which provides reference for the research and application of high performance copper matrix composites.

     

  • loading
  • [1]
    吴德振, 杨为良, 徐恒雷, 等. 高强高导铜合金的应用与制备方法[J]. 热加工工艺, 2019, 48(4):19-25.

    WU Dezhen, YANG Weiliang, XU Henglei, et al. Application and preparation methods of high strength and high conductivity Cu alloy[J]. Hot Working Technology,2019,48(4):19-25(in Chinese).
    [2]
    SAMAL P, NEWKIRK J. Powder metallurgy methods and applications, ASM handbook, volume 7, powder metallurgy[M]. Geauga: ASM International, 2015.
    [3]
    YANG Z, GE Y, ZHANG X, et al. Effect of carbon content on friction and wear properties of copper matrix composites at high speed current-carrying[J]. Materials,2019,12(18):2881.
    [4]
    YUE H, YAO L, GAO X, et al. Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites[J]. Journal of Alloys and Compounds,2017,691:755-762. doi: 10.1016/j.jallcom.2016.08.303
    [5]
    LI X, YAN S, CHEN X, et al. Microstructure and mechanical properties of graphene-reinforced copper matrix composites prepared by in-situ CVD, ball-milling, and spark plasma sintering[J]. Journal of Alloys and Compounds,2020,834:155182. doi: 10.1016/j.jallcom.2020.155182
    [6]
    SALVO C, MANGALARAJA R, UDAYABASHKAR R, et al. Enhanced mechanical and electrical properties of novel graphene reinforced copper matrix composites[J]. Journal of Alloys and Compounds,2019,777:309-316. doi: 10.1016/j.jallcom.2018.10.357
    [7]
    ZHOU M Y, REN L B, FAN L L, et al. Progress in research on hybrid metal matrix composites[J]. Journal of Alloys and Compounds,2020,838:155274. doi: 10.1016/j.jallcom.2020.155274
    [8]
    TAO J M, ZHU X K, TIAN W W, et al. Properties and microstructure of Cu/diamond composites prepared by spark plasma sintering method[J]. Transactions of Nonferrous Metals Society of China,2014,24(10):3210-3214. doi: 10.1016/S1003-6326(14)63462-2
    [9]
    李韶林, 宋克兴, 国秀花. 制备方法对Al2O3/Cu复合材料组织和性能的影响[J]. 特种铸造及有色合金, 2013, 33(3):272-275.

    LI Shaolin, SONG Kexing, GUO Xiuhua. Effect of preparation techniques on microstructures and properties of Al2O3/Cu composites[J]. Special Casting & Nonferrous Alloys,2013,33(3):272-275(in Chinese).
    [10]
    GHOSH S. Electroless copper deposition: A critical review[J]. Thin Solid Films,2019,669:641-658. doi: 10.1016/j.tsf.2018.11.016
    [11]
    陈春姣, 包宏伟, 李燕, 等. 石墨烯增强铜基复合材料研究进展[J]. 复合材料学报, 2023, 40(3):1248-1262.

    CHEN Chunjiao, BAO Hongwei, LI Yan, et al. Research progress of graphene reinforced copper matrix composites[J]. Acta Materiae Compositae Sinica,2023,40(3):1248-1262(in Chinese).
    [12]
    王军, 李林聪, 王天顺, 等. 石墨烯增强铜基复合材料强度及机理研究[J]. 河北科技大学学报, 2023, 44(1):58-66.

    WANG Jun, LI Lincong, WANG Tianshun, et al. Study on strength and mechanism of graphene-reinforced copper matrix composites[J]. Journal of Hebei University of Science and Technology,2023,44(1):58-66(in Chinese).
    [13]
    冯孟奇, 贾淑果, 李韶林, 等. 铜/碳复合材料的研究进展[J]. 材料热处理学报, 2020, 41(12):25-36.

    FENG Mengqi, JIA Shuguo, LI Shaolin, et al. Research progress of Cu/C composites[J]. Transactions of Materials and Heat Treatment,2020,41(12):25-36(in Chinese).
    [14]
    XU E, HUANG J, LI Y, et al. Graphite cluster/copper-based powder metallurgy composite for pantograph slider with well-behaved mechanical and wear performance[J]. Powder Technology,2019,344:551-560. doi: 10.1016/j.powtec.2018.12.059
    [15]
    SADHUKHAN P, SUBBARAO R. Study of mechanical and tribological properties of hybrid copper metal matrix composite reinforced with graphite and SiC[J]. Materials Today: Proceedings,2021,39:1801-1806. doi: 10.1016/j.matpr.2020.08.677
    [16]
    PRADEEP P, RAO M A, SURESHA B, et al. Mechanical behaviour and tribological properties of cenosphere-copper composites using design of experiments[J]. Materials Today: Proceedings,2021,43:1798-1809. doi: 10.1016/j.matpr.2020.10.494
    [17]
    MEHTA R, CHUGH S, CHEN Z. Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires[J]. Nano Letters,2015,15(3):2024-2030. doi: 10.1021/nl504889t
    [18]
    LI T, WANG Y, YANG M, et al. High strength and conductivity copper matrix composites reinforced by in-situ graphene through severe plastic deformation processes[J]. Journal of Alloys and Compounds,2021,851:156703. doi: 10.1016/j.jallcom.2020.156703
    [19]
    CHEN F, YING J, WANG Y, et al. Effects of graphene content on the microstructure and properties of copper matrix composites[J]. Carbon,2016,96:836-842. doi: 10.1016/j.carbon.2015.10.023
    [20]
    DAOUSH W M, LIM B K, MO C B, et al. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J]. Materials Science and Engineering: A,2009,513-514:247-253. doi: 10.1016/j.msea.2009.01.073
    [21]
    聂俊辉, 贾成厂, 张亚丰, 等. 机械球磨与放电等离子体烧结制备碳纳米管/铜复合材料[J]. 粉末冶金工业, 2011, 21(5):44-50.

    NIE Junhui, JIA Chengchang, ZHANG Yafeng, et al. Fabrication of carbon nonotubes/copper composites using mechanical milling and spark plasma sintering[J]. Powder Metallurgy Industry,2011,21(5):44-50(in Chinese).
    [22]
    KIM K T, CHA S I, HONG S H. Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites[J]. Materials Science and Engineering: A,2007,449:46-50.
    [23]
    CHEN Q. Carbon nanotube reinforced metal composites: US patent, 7651766[P]. 2010-01-26.
    [24]
    WU Y, LUO J, WANG Y, et al. Critical effect and enhanced thermal conductivity of Cu-diamond composites reinforced with various diamond prepared by composite electroplating[J]. Ceramics International,2019,45(10):13225-13234. doi: 10.1016/j.ceramint.2019.04.008
    [25]
    ABYZOV A M, KRUSZEWSKI M J, CIUPINSKI L, et al. Diamond-tungsten based coating-copper composites with high thermal conductivity produced by pulse plasma sintering[J]. Materials Design,2015,76:97-109. doi: 10.1016/j.matdes.2015.03.056
    [26]
    WAN Y Z, WANG Y L, LUO H L, et al. Effects of fiber volume fraction, hot pressing parameters and alloying elements on tensile strength of carbon fiber reinforced copper matrix composite prepared by continuous three-step electrodeposition[J]. Materials Science and Engineering: A,2000,288(1):26-33. doi: 10.1016/S0921-5093(00)00887-X
    [27]
    陈文革, 王娇娇, 马佳, 等. 镀铬碳纤维增强铜基复合材料的组织与性能[J]. 兵器材料科学与工程, 2017, 40(2):42-47.

    CHEN Wen'ge, WANG Jiaojiao, MA Jia, et al. Microstructure and properties of Cr-coated carbon fiber-reinforced copper matrix composites[J]. Ordnance Material Science and Engineering,2017,40(2):42-47(in Chinese).
    [28]
    WANG P, WANG L, KANG K, et al. Microstructural, mechanical and tribological performances of carbon fiber reinforced copper/carbon composites[J]. Composites Part A: Applied Science and Manufacturing,2021,142:106247. doi: 10.1016/j.compositesa.2020.106247
    [29]
    HOU B Q, GUO H X, ZHANG N L, et al. Anisotropic friction behavior of aligned and oriented graphite flakes/copper composite[J]. Carbon,2022,186:64-74. doi: 10.1016/j.carbon.2021.09.074
    [30]
    KUMAR J, MONDAL S. Microstructure and properties of graphite-reinforced copper matrix composites[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018,40:196. doi: 10.1007/s40430-018-1115-7
    [31]
    LI J F, ZHANG L, XIAO J K, et al. Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite[J]. Transactions of Nonferrous Metals Society of China,2015,25(10):3354-3362. doi: 10.1016/S1003-6326(15)63970-X
    [32]
    徐祥, 宋玲玲, 官雨柔, 等. 石墨烯增强金属基复合材料制备方法的研究进展[J]. 材料热处理学报, 2019, 40(5):24-31.

    XU Xiang, SONG Lingling, GUAN Yurou, et al. Research progress in preparation of graphene reinforced metal matrix composites[J]. Transactions of Materials and Heat Treatment,2019,40(5):24-31(in Chinese).
    [33]
    GAO X, YUE H, GUO E, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites[J]. Powder Technology,2016,301:601-607. doi: 10.1016/j.powtec.2016.06.045
    [34]
    ASGHARZADEH H, ESLAMI S. Effect of reduced graphene oxide nanoplatelets content on the mechanical and electrical properties of copper matrix composite[J]. Journal of Alloys and Compounds,2019,806:553-565. doi: 10.1016/j.jallcom.2019.07.183
    [35]
    JIN B, XIONG D B, TAN Z, et al. Enhanced corrosion resistance in metal matrix composites assembled from graphene encapsulated copper nanoflakes[J]. Carbon,2019,142:482-490. doi: 10.1016/j.carbon.2018.10.088
    [36]
    ZHANG X, SHI C, LIU E, et al. High-strength graphene network reinforced copper matrix composites achieved by architecture design and grain structure regulation[J]. Materials Science and Engineering: A,2019,762:138063. doi: 10.1016/j.msea.2019.138063
    [37]
    吕吉敏, 章潇慧, 熊定邦, 等. 超高导电铜基材料的研究现状与展望[J]. 中国材料进展, 2018, 37(6):453-462.

    LV Jimin, ZHANG Xiaohui, XIONG Dingbang, et al. Progress and prospect of ultra-conductive copper matrix materials[J]. Materials China,2018,37(6):453-462(in Chinese).
    [38]
    WU S, LIU Y, YU J, et al. A study of the structure, mechanical and corrosion properties of the copper matrix composites with CNTs/Cu foams as 3-dimensional skeleton reinforcements[J]. Journal of Materials Research and Technology,2023,23:5066-5081. doi: 10.1016/j.jmrt.2023.02.136
    [39]
    XIE Z, GUO H, ZHANG X, et al. Enhancing thermal conductivity of diamond/Cu composites by regulating distribution of bimodal diamond particles[J]. Diamond and Related Materials,2019,100:107564. doi: 10.1016/j.diamond.2019.107564
    [40]
    XIE Z, GUO H, ZHANG X, et al. Tailoring the thermal and mechanical properties of diamond/Cu composites by interface regulation of Cr alloying[J]. Diamond and Related Materials,2021,114:108309. doi: 10.1016/j.diamond.2021.108309
    [41]
    WU Y, TANG Z, WANG Y, et al. High thermal conductive Cu-diamond composites synthesized by electrodeposition and the critical effects of additives on void-free composites[J]. Ceramics International,2019,45(16):19658-19668. doi: 10.1016/j.ceramint.2019.06.215
    [42]
    WU Y, SUN Y, LUO J, et al. Microstructure of Cu-diamond composites with near-perfect interfaces prepared via electroplating and its thermal properties[J]. Materials Characterization,2019,150:199-206. doi: 10.1016/j.matchar.2019.02.018
    [43]
    WU Y, LAI L, WANG Y, et al. Optimization of external and internal conditions for high thermal conductive Cu-diamond composites produced by electroplating[J]. Diamond and Related Materials,2019,98:107478. doi: 10.1016/j.diamond.2019.107478
    [44]
    JAHANI A, JAMSHIDI AVAL H, RAJABI M, et al. Effects of Ti2SnC MAX phase reinforcement content on the properties of copper matrix composite produced by friction stir back extrusion process[J]. Materials Chemistry and Physics,2023,299:127497. doi: 10.1016/j.matchemphys.2023.127497
    [45]
    WU J, LI Z, WEN G, et al. Structure analysis of friction layer of copper matrix composites reinforced by composite ceramic (TiC-B4C) powder[J]. Ceramics International,2023,49(14):23140-23152. doi: 10.1016/j.ceramint.2023.04.142
    [46]
    DINAHARAN I, ALBERT T. Effect of reinforcement type on microstructural evolution and wear performance of copper matrix composites via powder metallurgy[J]. Materials Today Communications,2023,34:105250. doi: 10.1016/j.mtcomm.2022.105250
    [47]
    湛永钟. 铜基复合材料及其制备技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015.

    ZHAN Yongzhong. Copper matrix composite and its preparation technology[M]. Harbin: Harbin Institute of Technology Press, 2015(in Chinese).
    [48]
    胡翠欣, 张修庆, 吕玉廷, 等. 放电等离子法制备SiC/Cu复合材料及其性能研究[J]. 热加工工艺, 2013, 42(6):117-121, 124.

    HU Cuixin, ZHANG Xiuqing, LV Yuting, et al. Study on properties of SiC/Cu composite prepared by spark plasma sintering[J]. Hot Working Technology,2013,42(6):117-121, 124(in Chinese).
    [49]
    GAN K K, GU M Y. Mechanical alloying process and mechanical properties of Cu-SiCp composite[J]. Materials Science and Technology,2006,22(8):960-964. doi: 10.1179/174328406X102363
    [50]
    AKRAMIFARD H R, SHAMANIAN M, SABBAGHIAN M, et al. Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing[J]. Materials & Design,2014,54:838-844. doi: 10.1016/j.matdes.2013.08.107
    [51]
    KUMAR S, YADAV A, PATEL V, et al. Mechanical behaviour of SiC particulate reinforced Cu alloy based metal matrix composite[J]. Materials Today: Proceedings,2021,41:186-190. doi: 10.1016/j.matpr.2020.08.580
    [52]
    WEGLEWSKI W, PITCHAI P, CHMIELEWSKI M, et al. Thermal conductivity of Cu-matrix composites reinforced with coated SiC particles: Numerical modeling and experimental verification[J]. International Journal of Heat Mass Transfer,2022,188:122633. doi: 10.1016/j.ijheatmasstransfer.2022.122633
    [53]
    CELEBI E G, IPEK M, ZEYTIN S, et al. An investigation of the effect of SiC particle size on Cu-SiC composites[J]. Composites Part B: Engineering,2012,43(4):1813-1822. doi: 10.1016/j.compositesb.2012.01.006
    [54]
    刘有金, 张云龙, 高晶, 等. SiC颗粒尺寸对SiCp/Cu基复合材料热膨胀系数的影响[J]. 兵器材料科学与工程, 2013, 36(1):118-121.

    LIU Youjin, ZHANG Yunlong, GAO Jing, et al. Effect of SiC particle size on thermal expansion coefficients of SiCp/Cu composites[J]. Ordnance Material Science and Engineering,2013,36(1):118-121(in Chinese).
    [55]
    SOMANI N, TYAGI Y, KUMAR P, et al. Enhanced tribological properties of SiC reinforced copper metal matrix composites[J]. Materials Research Express,2018,6(1):016549. doi: 10.1088/2053-1591/aae6dc
    [56]
    白芳. 原位纳米TiCx颗粒增强铜基复合材料组织与性能研究[D]. 长春: 吉林大学, 2017.

    BAI Fang. Microstructures and properties of in situ nano TiCx particles reinforced Cu-matrix composites[D]. Changchun: Jilin University, 2017(in Chinese).
    [57]
    李月英, 倪慨宇, 祝夫文. TiC颗粒增强铜基复合材料的研究[J]. 粉末冶金技术, 2018, 36(2):106-110.

    LI Yueying, NI Kaiyu, ZHU Fuwen. Study of TiC particle-reinforced copper matrix composite materials[J]. Powder Metallurgy Technology,2018,36(2):106-110(in Chinese).
    [58]
    闫洁, 江开勇. TiC/Cu复合材料的PM法制备与性能[J]. 重庆理工大学学报(自然科学), 2012, 26(9):42-45, 60.

    YAN Jie, JIANG Kaiyong. Fabrication with power metallurgy and study on properties of TiC/Cu composites[J]. Journal of Chongqing University of Technology (Natural Science),2012,26(9):42-45, 60(in Chinese).
    [59]
    张煜, 宋美慧, 李岩, 等. 氮化铝颗粒增强铜基复合材料的制备及性能[J]. 黑龙江科技大学学报, 2016, 26(1):48-52. doi: 10.3969/j.issn.2095-7262.2016.01.012

    ZHANG Yu, SONG Meihui, LI Yan, et al. Preparation and properties of AlN particles reinforced Cu-base composites[J]. Journal of Heilongjiang University of Science and Technology,2016,26(1):48-52(in Chinese). doi: 10.3969/j.issn.2095-7262.2016.01.012
    [60]
    刘佳思, 纪箴, 贾成厂, 等. 纳米AlN颗粒弥散增强铜基复合材料的制备及性能研究[J]. 粉末冶金技术, 2017, 35(5):323-327.

    LIU Jiasi, JI Zhen, JIA Chengchang, et al. Preparation and performance study of nano AlN particle dispersion reinforced copper matrix composite materials[J]. Powder Metallurgy Technology,2017,35(5):323-327(in Chinese).
    [61]
    RAJKUMAR K, ARAVINDAN S. Mechanical, electrical, and tribological properties of copper-graphite composites[M]// Composite Materials: Processing, Applications, Characterizations. Berlin: Springer, 2017: 433-455.
    [62]
    杜建华, 刘贵民, 宋娅玲, 等. 纳米SiC晶须增强铜基纳米复合材料摩擦学性能研究[J]. 装甲兵工程学院学报, 2009, 23(1):77-80. doi: 10.3969/j.issn.1672-1497.2009.01.019

    DU Jianhua, LIU Guimin, SONG Yaling. Study on the tribological performance of nano-SiCw reinforced Cu-based composites[J]. Journal of Armored Forces,2009,23(1):77-80(in Chinese). doi: 10.3969/j.issn.1672-1497.2009.01.019
    [63]
    FENG J, LIANG S, GUO X, et al. Electrical conductivity anisotropy of copper matrix composites reinforced with SiC whiskers[J]. Nanotechnology Reviews,2019,8(1):26. doi: 10.1515/ntrev-2019-0027
    [64]
    LUO X, YANG Y, LI J, et al. The effect of fabrication processes on the mechanical and interfacial properties of SiCf/Cu-matrix composites[J]. Composites Part A: Applied Science and Manufacturing,2007,38(10):2102-2108. doi: 10.1016/j.compositesa.2007.07.016
    [65]
    LUO X, YANG Y, LI J, et al. Effect of nickel on the interface and mechanical properties of SiCf/Cu composites[J]. Journal of Alloys and Compounds,2009,469(1-2):237-243. doi: 10.1016/j.jallcom.2008.01.089
    [66]
    LUO X, YANG Y, LIU C, et al. The thermal expansion behavior of unidirectional SiC fiber-reinforced Cu-matrix composites[J]. Scripta Materialia,2008,58(5):401-404. doi: 10.1016/j.scriptamat.2007.10.022
    [67]
    LUO X, YANG Y, LIU Y, et al. The fabrication and property of SiC fiber reinforced copper matrix composites[J]. Materials Science and Engineering: A,2007,459(1-2):244-250. doi: 10.1016/j.msea.2007.01.010
    [68]
    冯江, 宋克兴, 梁淑华. 混杂增强铜基复合材料的设计与研究进展[J]. 材料热处理学报, 2018, 39(5):1-9.

    FENG Jiang, SONG Kexing, LIANG Shuhua, et al. Design and research progress of hybrid reinforced copper matrix composites[J]. Transactions of Materials and Heat Treatment,2018,39(5):1-9(in Chinese).
    [69]
    邹存磊. 原位Cu-Ti(Zr)-B颗粒增强铜基复合材料的制备与性能研究[D]. 大连: 大连理工大学, 2018.

    ZOU Cunlei. Study on the fabrication and properties of in situ Cu-Ti(Zr)-B particulate reinforced copper matrix composites[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    [70]
    张胜利, 国秀花, 宋克兴, 等. 多粒径TiB2颗粒增强铜基复合材料的制备与载流摩擦磨损性能[J]. 复合材料学报, 2019, 36(10):2348-2356.

    ZHANG Shengli, GUO Xiuhua, SONG Kexing, et al. Preparation and electrical wear characteristics of copper matrix composites reinforced with mixing sized TiB2 particles[J]. Acta Materiae Compositae Sinica,2019,36(10):2348-2356(in Chinese).
    [71]
    刘勇, 李辉, 杨志强, 等. TiC粒径对颗粒增强铜基复合材料高温变形行为的影响[J]. 材料热处理学报, 2015, 36(8):1-5.

    LIU Yong, LI Hui, YANG Zhiqiang, et al. Effect of TiC particle size of particle-strengthen Cu-based composites on deformation behavior at high temperature[J]. Transactions of Materials and Heat Treatment,2015,36(8):1-5(in Chinese).
    [72]
    ZHU J, CAI Y, ZHANG Y, et al. Particle-reinforced Cu matrix composites fabricated by sintering core-shell-type amorphous/crystalline composite powders[J]. Materials Science Engineering: A,2022,854:143823. doi: 10.1016/j.msea.2022.143823
    [73]
    SALVO C, CHICARDI E, HERNANDEZ-SAZ J, et al. Microstructure, electrical and mechanical properties of Ti2AlN MAX phase reinforced copper matrix composites processed by hot pressing[J]. Materials Characterization,2021,171:110812. doi: 10.1016/j.matchar.2020.110812
    [74]
    PRABHU T R, VARMA V K, VEDANTAM S. Tribological and mechanical behavior of multilayer Cu/SiC + Gr hybrid composites for brake friction material applications[J]. Wear,2014,317(1-2):201-212. doi: 10.1016/j.wear.2014.06.006
    [75]
    LIANG S H, LI W Z, JIANG Y H, et al. Microstructures and properties of hybrid copper matrix composites reinforced by TiB whiskers and TiB2 particles[J]. Journal of Alloys and Compounds,2019,797:589-594. doi: 10.1016/j.jallcom.2019.05.129
    [76]
    周永欣, 徐飞, 吕振林, 等. SiC和石墨颗粒混杂增强铜基复合材料的摩擦磨损性能[J]. 机械工程材料, 2015, 39(2):90-93, 97.

    ZHOU Yongxin, XU Fei, LV Zhenlin, et al. Friction and wear properties of Cu matrix composites hybrid reinforced with SiC and graphite particles[J]. Materials for Mechanical Engineering,2015,39(2):90-93, 97(in Chinese).
    [77]
    GUO X, YANG Y, SONG K, et al. Arc erosion resistance of hybrid copper matrix composites reinforced with CNTs and micro-TiB2 particles[J]. Journal of Materials Research and Technology,2021,11:1469-1479. doi: 10.1016/j.jmrt.2021.01.084
    [78]
    JAMWAL A, SETH P P, KUMAR D, et al. Microstructural, tribological and compression behaviour of copper matrix reinforced with graphite-SiC hybrid composites[J]. Materials Chemistry Physics,2020,251:123090. doi: 10.1016/j.matchemphys.2020.123090
    [79]
    DUAN D, YIN X, WANG Q, et al. Performance evaluation of borohydride electrooxidation reaction with ternary alloy Au-Ni-Cu/C catalysts[J]. Journal of Applied Electrochemistry,2018,48:835-847. doi: 10.1007/s10800-018-1208-0
    [80]
    WANG S, SHEN B, SONG Q. Kinetics of acetylene hydrochlorination over bimetallic Au-Cu/C catalyst[J]. Catalysis Letters,2010,134:102-109. doi: 10.1007/s10562-009-0216-4
    [81]
    BUKHTIYAROV A, PROSVIRIN I, CHETYRIN I, et al. Thermal stability of Ag-Au, Cu-Au, and Ag-Cu bimetallic nanoparticles supported on highly oriented pyrolytic graphite[J]. Kinetics Catalysis Letters,2016,57:704-711. doi: 10.1134/S0023158416050049
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (1579) PDF downloads(189) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return