Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WU Xinyu, YUAN Yang, LIAN Hailan. Research progress in preparation and functional application of nanocellulose by the pretreatment of deep eutectic solvent[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5567-5576. doi: 10.13801/j.cnki.fhclxb.20230512.001
Citation: WU Xinyu, YUAN Yang, LIAN Hailan. Research progress in preparation and functional application of nanocellulose by the pretreatment of deep eutectic solvent[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5567-5576. doi: 10.13801/j.cnki.fhclxb.20230512.001

Research progress in preparation and functional application of nanocellulose by the pretreatment of deep eutectic solvent

doi: 10.13801/j.cnki.fhclxb.20230512.001
Funds:  National Natural Science Foundation of China (32071703); Natural Science Foundation of Jiangsu Province (BK20221335)
  • Received Date: 2023-03-22
  • Accepted Date: 2023-05-04
  • Rev Recd Date: 2023-04-15
  • Available Online: 2023-05-15
  • Publish Date: 2023-10-15
  • In recent years, environmentally friendly green solvents have become an important research direction in green chemistry. As a new type of green solvent with certain degradability, good biocompatibility and relatively environmental protection, the deep eutectic solvent has preliminarily shown its strong development potential in the preparation and functional modification of nanocellulose. This paper mainly reviews the basic properties and formation mechanism of the deep eutectic solvent, and introduces the application of different deep eutectic solvent in the preparation and functional modification of nanocellulose, so as to achieve efficient preparation and modification of nanocellulose. In the future, the designability of the deep eutectic solvent can be brought into full play through the combination of experiment and computational simulation technology and reveal the law of its dissolution, degradation and functionalization in the preparation of nanocellulose, so as to provide references for the preparation and modification of the pretreatment of the deep eutectic solvent and promote its large-scale application in biomass pretreatment.

     

  • loading
  • [1]
    BIAN H, GAO Y, LUO J, et al. Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials[J]. Waste Management,2019,91:1-8. doi: 10.1016/j.wasman.2019.04.052
    [2]
    CHEN H, NAIR S S, CHAUHAN P, et al. Lignin containing cellulose nanofibril application in pMDI wood adhesives for drastically improved gap-filling properties with robust bondline interfaces[J]. Chemical Engineering Journal,2019,360:393-401. doi: 10.1016/j.cej.2018.11.222
    [3]
    ESPINO-PÉREZ E, DOMENEK S, BELGACEM N, et al. Green process for chemical functionalization of nanocellulose with carboxylic acids[J]. Biomacromolecules,2014,15(12):4551-4560. doi: 10.1021/bm5013458
    [4]
    PHIRI R, SANJAY M R, SIENGCHIN S, et al. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review[J/OL]. Advanced Industrial and Engineering Polymer Research, 2023[2023-04-29].
    [5]
    叶代勇, 黄洪, 傅和青, 等. 纤维素化学研究进展[J]. 化工学报, 2006, 57(8):1782-1791. doi: 10.3321/j.issn:0438-1157.2006.08.010

    YE Daiyong, HUANG Hong, FU Heqing, et al. Research progress in cellulose chemistry[J]. Journal of Chemical Engineering,2006,57(8):1782-1791(in Chinese). doi: 10.3321/j.issn:0438-1157.2006.08.010
    [6]
    FU H, GAO W, WANG B, et al. Effect of lignin content on the microstructural characteristics of lignocellulose nanofibrils[J]. Cellulose,2019,27(3):1327-1340.
    [7]
    HABIBI Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews,2014,43(5):1519-1542. doi: 10.1039/C3CS60204D
    [8]
    JIANG J, CARRILLO-ENRÍQUEZ N C, OGUZLU H, et al. High production yield and more thermally stable lignin-containing cellulose nanocrystals isolated using a ternary acidic deep eutectic solvent[J]. ACS Sustainable Chemistry & Engineering,2020,8(18):7182-7191.
    [9]
    ÖSTERBERG M, SIPPONEN M H, MATTOS B D, et al. Spherical lignin particles: A review on their sustainability and applications[J]. Green Chemistry,2020,22(9):2712-2733. doi: 10.1039/D0GC00096E
    [10]
    DIOP C I K, TAJVIDI M, BILODEAU M A, et al. Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: Example of fiberboard[J]. Cellulose,2017,24(7):3037-3050. doi: 10.1007/s10570-017-1320-z
    [11]
    禚晓. 纳米纤维素纸基生物传感器设计[D]. 泰安: 山东农业大学, 2018.

    ZHUO Xiao. Design of paper based nanocellulose biosensor[D]. Taian: Shandong Agricultural University, 2018(in Chinese).
    [12]
    王阳, 赵国华, 肖丽, 等. 源于食品加工副产物纳米纤维素晶体的制备及其在食品中的应用[J]. 食品与机械, 2017, 33(2):1-5. doi: 10.13652/j.issn.1003-5788.2017.02.001

    WANG Yang, ZHAO Guohua, XIAO Li, et al. Preparation and application of nanocellulose crystals from food processing by-products[J]. Food & Machinery,2017,33(2):1-5(in Chinese). doi: 10.13652/j.issn.1003-5788.2017.02.001
    [13]
    SAI Y W, LEE K M. Enhanced cellulase accessibility using acid-based deep eutectic solvent in pretreatment of empty fruit bunches[J]. Cellulose,2019,26(18):9517-9528. doi: 10.1007/s10570-019-02770-w
    [14]
    SOLALA I, IGLESIAS M C, PERESIN M S. On the potential of lignin-containing cellulose nanofibrils (LCNFs): A review on properties and applications[J]. Cellulose,2019,27(4):1853-1877.
    [15]
    LOOW Y, NEW E K, YANG G H, et al. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion[J]. Cellulose,2017,24(9):3591-3618. doi: 10.1007/s10570-017-1358-y
    [16]
    胡丽华, 陈砺, 方泳华, 等. 低共熔溶剂的分子结构及物性估算的研究进展[J]. 化学试剂, 2017, 39(9):937-941. doi: 10.13822/j.cnki.hxsj.2017.09.008

    HU Lihua, CHEN Li, FANG Yonghua, et al. Research progress in estimating molecular structure and physical properties of eutectic solvents[J]. Chemical Reagents,2017,39(9):937-941(in Chinese). doi: 10.13822/j.cnki.hxsj.2017.09.008
    [17]
    WAGLE D V, DEAKYNE C A, BAKER G A. Quantum chemical insight into the interactions and thermodynamics present in choline chloride based deep eutectic solvents[J]. The Journal of Physical Chemistry B,2016,120(27):6739-6746. doi: 10.1021/acs.jpcb.6b04750
    [18]
    THI S, LEE K M. Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): Cellulose digestibility, structural and morphology changes[J]. Bioresource Technology,2019,282:525-529. doi: 10.1016/j.biortech.2019.03.065
    [19]
    ZHANG Q, DE OLIVEIRA VIGIER K, ROYER S, et al. Deep eutectic solvents: Syntheses, properties and applications[J]. Chemical Society Reviews,2012,41(21):7108-7146. doi: 10.1039/c2cs35178a
    [20]
    ZHANG Y, HE H, DONG K, et al. A DFT study on lignin dissolution in imidazolium-based ionic liquids[J]. RSC Advances,2017,7(21):12670-12681. doi: 10.1039/C6RA27059J
    [21]
    XIA Q, LIU Y, MENG J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass[J]. Green Chemistry,2018,20(12):2711-2721. doi: 10.1039/C8GC00900G
    [22]
    PERNA F M, VITALE P, CAPRIATI V. Deep eutectic solvents and their applications as green solvents[J]. Current Opinion in Green and Sustainable Chemistry,2020,21:27-33. doi: 10.1016/j.cogsc.2019.09.004
    [23]
    ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications,2003(1):70-71. doi: 10.1039/b210714g
    [24]
    LOU R, MA R, LIN K, et al. Facile extraction of wheat straw by deep eutectic solvent (DES) to produce lignin nanoparticles[J]. ACS Sustainable Chemistry & Engineering,2019,7(12):10248-10256.
    [25]
    LI W, XIAO W, YANG Y, et al. Insights into bamboo delignification with acidic deep eutectic solvents pretreatment for enhanced lignin fractionation and valorization[J]. Industrial Crops and Products,2021,170:113692. doi: 10.1016/j.indcrop.2021.113692
    [26]
    KIM K H, DUTTA T, SUN J, et al. Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green Chemistry,2018,20(4):809-815. doi: 10.1039/C7GC03029K
    [27]
    HOU X D, LI A L, LIN K P, et al. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresource Technology,2018,249:261-267. doi: 10.1016/j.biortech.2017.10.019
    [28]
    YUAN Y, HONG S, LIAN H, et al. Comparison of acidic deep eutectic solvents in production of chitin nanocrystals[J]. Carbohydrate Polymers,2020,236:116095. doi: 10.1016/j.carbpol.2020.116095
    [29]
    金永香, 刘天勤, 顾忠基, 等. 氯化胆碱/丙三醇低共熔溶剂改性木质素磺酸钠及其在环氧树脂乳液中的应用[J]. 林业工程学报, 2017, 2(4):96-102.

    JIN Yongxiang, LIU Tianqin, GU Zhongji, et al. Modification of sodium Lignosulfonate with low eutectic solvent of choline chloride/glycerol and its application in epoxy resin emulsion[J]. Journal of Forest Engineering,2017,2(4):96-102(in Chinese).
    [30]
    ABBOTT A P, CAPPER G, GRAY S. Design of improved deep eutectic solvents using hole theory[J]. ChemPhysChem,2006,7(4):803-806. doi: 10.1002/cphc.200500489
    [31]
    FRANCISCO M, VAN DEN BRUINHORST A, KROON M C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents[J]. Angewandte Chemie,2013,52(11):3074-3085. doi: 10.1002/anie.201207548
    [32]
    谢宜彤, 郭鑫, 吕艳娜, 等. 低共熔溶剂在木质纤维原料溶解及其组分分离中的研究进展[J]. 林产化学与工业, 2019, 39(5):11-18. doi: 10.3969/j.issn.0253-2417.2019.05.002

    XIE Yitong, GUO Xin, LYU Yanna, et al. Research progress of low eutectic solvents in the dissolution and separation of wood fiber raw materials[J]. Chemistry and Industry of Forest Products,2019,39(5):11-18(in Chinese). doi: 10.3969/j.issn.0253-2417.2019.05.002
    [33]
    SOARES B, TAVARES D J P, AMARAL J L, et al. Enhanced solubility of lignin monomeric model compounds and technical lignins in aqueous solutions of deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering,2017,5(5):4056-4065.
    [34]
    MALAEKE H, HOUSAINDOKHT M R, MONHEMI H, et al. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification[J]. Journal of Molecular Liquids,2018,263:193-199. doi: 10.1016/j.molliq.2018.05.001
    [35]
    PATIL T V, PATEL D K, DUTTA S D, et al. Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications[J]. Bioactive Materials,2022,9:566-589. doi: 10.1016/j.bioactmat.2021.07.006
    [36]
    SHAK K P Y, PANG Y L, MAH S K. Nanocellulose: Recent advances and its prospects in environmental remediation[J]. Beilstein Journal of Nanotechnology,2018,9:2479-2498. doi: 10.3762/bjnano.9.232
    [37]
    NG H, SIN L T, TEE T, et al. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers[J]. Composites Part B: Engineering,2015,75:176-200. doi: 10.1016/j.compositesb.2015.01.008
    [38]
    SIRVIÖ J A, VISANKO M, LIIMATAINEN H. Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose[J]. Green Chemistry,2015,17(6):3401-3406. doi: 10.1039/C5GC00398A
    [39]
    SIPPONEN M H, SMYTH M, LESKINEN T, et al. All-lignin approach to prepare cationic colloidal lignin particles: Stabilization of durable Pickering emulsions[J]. Green Chemistry,2017,19(24):5831-5840. doi: 10.1039/C7GC02900D
    [40]
    SIRVIÖ J, UKKOLA J, LIIMATAINEN H. Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers[J]. Cellulose,2019,26(4):2303-2316. doi: 10.1007/s10570-019-02257-8
    [41]
    SIRVIÖ J A, HYYPIÖ K, ASAADI S, et al. High-strength cellulose nanofibers produced via swelling pretreatment based on a choline chloride-imidazole deep eutectic solvent[J]. Green Chemistry,2020,22(5):1763-1775. doi: 10.1039/C9GC04119B
    [42]
    SIRVIÖ J A, VISANKO M. Lignin-rich sulfated wood nanofibers as high-performing adsorbents for the removal of lead and copper from water[J]. Journal of Hazardous Materials,2020,383:121174. doi: 10.1016/j.jhazmat.2019.121174
    [43]
    LI P, SIRVIÖ J A, HAAPALA A, et al. Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments[J]. ACS Applied Materials & Interfaces,2017,9(3):2846-2855.
    [44]
    SELKÄLÄ T, SUOPAJÄRVI T, SIRVIÖ J A, et al. Rapid uptake of pharmaceutical salbutamol from aqueous solutions with anionic cellulose nanofibrils: The importance of pH and colloidal stability in the interaction with ionizable pollutants[J]. Chemical Engineering Journal,2018,350:378-385. doi: 10.1016/j.cej.2018.05.163
    [45]
    LAITINEN O, SUOPAJÄRVI T, LIIMATAINEN H. Enhancing packaging board properties using micro- and nanofibers prepared from recycled board[J]. Cellulose,2020,27(12):7215-7225. doi: 10.1007/s10570-020-03264-w
    [46]
    MA G, ZHANG Z, CHEN J, et al. Facile sulfation of cellulose via recyclable ternary deep eutectic solvents for low-cost cellulose nanofibril preparation[J]. Nanoscale Advances,2023,5(2):356-360. doi: 10.1039/D2NA00769J
    [47]
    PAN M, ZHAO G, DING C, et al. Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea[J]. Carbohydrate Polymers,2017,176:307-314. doi: 10.1016/j.carbpol.2017.08.088
    [48]
    SMIRNOV M A, SOKOLOVA M P, TOLMACHEV D A, et al. Green method for preparation of cellulose nanocrystals using deep eutectic solvent[J]. Cellulose,2020,27(8):4305-4317. doi: 10.1007/s10570-020-03100-1
    [49]
    SUOPAJÄRVI T, SIRVIÖ J A, LIIMATAINEN H. Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps[J]. Carbohydrate Polymers,2017,169:167-175. doi: 10.1016/j.carbpol.2017.04.009
    [50]
    LI T, LYU G, LIU Y, et al. Deep eutectic solvents (DESs) for the isolation of willow lignin[J]. International Journal of Molecular Sciences,2017,18(11):2266. doi: 10.3390/ijms18112266
    [51]
    SUOPAJÄRVI T, RICCI P, KARVONEN V, et al. Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues[J]. Industrial Crops and Products,2020,145:111956. doi: 10.1016/j.indcrop.2019.111956
    [52]
    LIU C, LI M C, CHEN W, et al. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement[J]. Carbohydrate Polymers,2020,246:116548. doi: 10.1016/j.carbpol.2020.116548
    [53]
    SIRVIÖ J A, VISANKO M. Anionic wood nanofibers produced from unbleached mechanical pulp by highly efficient chemical modification[J]. Journal of Materials Chemistry A,2017,5(41):21828-21835. doi: 10.1039/C7TA05668K
    [54]
    HONG S, YUAN Y, LI P, et al. Enhancement of the nanofibrillation of birch cellulose pretreated with natural deep eutectic solvent[J]. Industrial Crops and Products,2020,154:112677. doi: 10.1016/j.indcrop.2020.112677
    [55]
    WU X, YUAN Y, HONG S, et al. Controllable preparation of nano-cellulose via natural deep eutectic solvents prepared with lactate and choline chloride[J]. Industrial crops and products,2023,194:116259. doi: 10.1016/j.indcrop.2023.116259
    [56]
    SIRVIÖ J A, VISANKO M, LIIMATAINEN H. Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production[J]. Biomacromolecules,2016,17(9):3025-3032. doi: 10.1021/acs.biomac.6b00910
    [57]
    LI P, SIRVIÖ J A, ASANTE B, et al. Recyclable deep eutectic solvent for the production of cationic nanocelluloses[J]. Carbohydrate Polymers,2018,199:219-227. doi: 10.1016/j.carbpol.2018.07.024
    [58]
    WANG Y, FU S, LUCIA L A, et al. A cellulose-based self-healing composite eutectogel with reversibility and recyclability for multi-sensing[J]. Composites Science and Technology,2022,229:109696. doi: 10.1016/j.compscitech.2022.109696
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (766) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return