Volume 40 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
LU Peng, WANG Xinyu, LIANG Huan, et al. Polyvinylidene fluoride-based composites and their application in energy storage devices[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4943-4957. doi: 10.13801/j.cnki.fhclxb.20230509.001
Citation: LU Peng, WANG Xinyu, LIANG Huan, et al. Polyvinylidene fluoride-based composites and their application in energy storage devices[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4943-4957. doi: 10.13801/j.cnki.fhclxb.20230509.001

Polyvinylidene fluoride-based composites and their application in energy storage devices

doi: 10.13801/j.cnki.fhclxb.20230509.001
Funds:  National Natural Science Foundation of China (22278205; 21604037); Sinopec Ministry of Science; Technology Basic Prospective Research Project (420106)
  • Received Date: 2023-02-28
  • Accepted Date: 2023-04-28
  • Rev Recd Date: 2023-04-14
  • Available Online: 2023-05-09
  • Publish Date: 2023-09-15
  • With the back ground of "double carbon" strategy in China, the development of energy storage devices with 'three high, one long, one low and one protection' (i.e. high energy density, high power density, high security, long cycle stability, low cost and environmental protection) is of great significance. Polyvinylidene fluoride (PVDF)-based fluoropolymers has been widely used as binder, separator and electrolyte materials for energy storage devices of batteries and supercapacitors due to their good mechanical property, electrical and chemical stability. With the rapid development of energy storage devices, functionalization of PVDF-based fluoropolymers to meet the needs of energy storage devices with 'three high, one long, one low and one protection' for energy storage device has gain increasing number of research interests. This paper comprehensively introduces the application of PVDF-based polymer nanocomposites as binder, electrolyte and separator materials in energy storage devices. The mechanism of different functional composite modifications to improve the performance of PVDF-based materials are compared and highlighted. The outlook of the PVDF-based materials applied in the field of energy storage is also discussed.

     

  • loading
  • [1]
    NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today,2015,18(5):252-264. doi: 10.1016/j.mattod.2014.10.040
    [2]
    PING Y, JIN-RAN S U. Technology and application progress of lithium ion battery[J]. Chinese Journal of Power Sources,2009,33(11):1037-1039.
    [3]
    XIE H, TANG Z, LI Z, et al. PVDF-HFP composite polymer electrolyte with excellent electrochemical properties for Li-ion batteries[J]. Journal of Solid State Electrochemistry,2008,12(11):1497-1502. doi: 10.1007/s10008-008-0511-9
    [4]
    BURKE A. Ultracapacitors: Why, how, and where is the technology[J]. Journal of Power Sources,2000,91(1):37-50. doi: 10.1016/S0378-7753(00)00485-7
    [5]
    YOO M, FRANK C W, MORI S, et al. Effect of poly(vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery[J]. Polymer,2003,44(15):4197-4204. doi: 10.1016/S0032-3861(03)00364-1
    [6]
    HE J Y, LIU J Q, LI J, et al. Enhanced ionic conductivity and electrochemical capacity of lithium ion battery based on PVDF-HFP/HDPE membrane[J]. Materials Letters,2016,170:126-129. doi: 10.1016/j.matlet.2016.02.010
    [7]
    LOGHAVI M M, BAHADORIKHALILI S, LARI N, et al. The effect of crystalline microstructure of PVDF binder on mechanical and electrochemical performance of lithium-ion batteries cathode[J]. Zeitschrift für Physikalische Chemie,2020,234(3):381-397.
    [8]
    DONG Y Z, ZHAO Y M, CHEN Y H, et al. Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries[J]. Materials Chemistry and Physics,2009,115(1):245-250. doi: 10.1016/j.matchemphys.2008.11.063
    [9]
    GöREN A, COSTA C M, SILVA M M, et al. Influence of fluoropolymer binders on the electrochemical performance of C-LiFePO4 based cathodes[J]. Solid State Ionics,2016,295:57-64. doi: 10.1016/j.ssi.2016.07.012
    [10]
    WANG X, LIU S, ZHANG Y, et al. Highly elastic block copolymer binders for silicon anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2020,12(34):38132-38139.
    [11]
    LIANG X H, WU X, WANG Y T, et al. Study on preparation and performance of PEO-PVDF composite binder for lithium ion batteries[J]. International Journal of Electrochemical Science,2020,15(9):8471-8478.
    [12]
    ZHENG M, FU X, WANG Y, et al. Poly(vinylidene fluoride)-based blends as new binders for lithium-ion batteries[J]. ChemElectroChem,2018,5(16):2288-2294. doi: 10.1002/celc.201800553
    [13]
    LIU S, ZHONG H, ZHANG C, et al. Improving the processability and cycling stability of nano-LiFePO4 cathode by using PVDF/TX binary binder[J]. Composite Interfaces,2019,26(11):1013-1024. doi: 10.1080/09276440.2019.1578574
    [14]
    TOIGO C, SINGH M, GMEINER B, et al. A method to measure the swelling of water-soluble PVDF binder system and its electrochemical performance for lithium ion batteries[J]. Journal of The Electrochemical Society,2020,167(2):020514. doi: 10.1149/1945-7111/ab68c2
    [15]
    NAGULAPATI V M, LEE J H, KIM H S, et al. Novel hybrid binder mixture tailored to enhance the electrochemical performance of SbTe bi-metallic anode for sodium ion batteries[J]. Journal of Electroanalytical Chemistry,2020,865(7):114160.
    [16]
    ZHAO Y, QIN Y, DA X, et al. High lithium salt content PVDF-based solid-state composite polymer electrolyte enhanced by h-BN nanosheets[J]. ChemSusChem,2022,15(24):e202201554.
    [17]
    HUANG Y, ZENG J, LI S, et al. Conformational regulation of dielectric poly(vinylidene fluoride)-based solid-state electrolytes for efficient lithium salt dissociation and lithium-ion transportation[J]. Advanced Energy Materials,2023,13(15):2203888. doi: 10.1002/aenm.202203888
    [18]
    MESALLAM M, KAMAR E M, SHARMA N, et al. Synthesis and characterization of polyvinylidene fluoride/magnesium bromide polymer electrolyte for magnesium battery application[J]. Physica Scripta,2020,95(11):115805. doi: 10.1088/1402-4896/abbcf4
    [19]
    SONG S, TAN X, ZHAI Y, et al. Ultrathin, compacted gel polymer electrolytes enable high-energy and stable-cycling 4 V lithium-metal batteries[J]. ChemElectroChem,2020,7(17):3656-3662. doi: 10.1002/celc.202000955
    [20]
    GUO J, HOU H B, CHENG J M, et al. Microporous bayberry-like nano-silica fillers enabling superior performance gel polymer electrolyte for lithium metal batteries[J]. Journal of Materials Science: Materials in Electronics,2021,32(5):1-13.
    [21]
    XU P, CHEN H, ZHOU X, et al. Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery[J]. Journal of Membrane Science,2021,617:118660. doi: 10.1016/j.memsci.2020.118660
    [22]
    HUANG J, HUANG Y, ZHANG Z, et al. Li6.7La3Zr1.7Ta0.3O12 reinforced PEO/PVDF-HFP based composite solid electrolyte for all solid-state lithium metal battery[J]. Energy & Fuels,2020,34(11):15011-15018.
    [23]
    LIU Q, LIU Y, JIAO X, et al. Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries[J]. Energy Storage Materials,2019,23:105-111. doi: 10.1016/j.ensm.2019.05.023
    [24]
    TAO S, LI J, HU R, et al. 3Li2S-2MoS2 filled composite polymer PVDF-HFP/LiODFB electrolyte with excellent interface performance for lithium metal batteries[J]. Applied Surface Science,2021,536(30):147794.
    [25]
    TABANI Z, MAGHSOUDI H, ZONOUZ A F. High electrochemical stability of polyvinylidene fluoride (PVDF) porous membranes using phase inversion methods for lithium-ion batteries[J]. Journal of Solid State Electrochemistry,2021,25(2):651-657. doi: 10.1007/s10008-020-04842-5
    [26]
    崔巍巍, 孟庆朋, 王振宇, 等. 大倍率高耐热聚醚酰亚胺-聚偏氟乙烯芯壳纳米纤维锂离子电池隔膜[J]. 复合材料学报, 2019, 36(1):69-76. doi: 10.13801/j.cnki.fhclxb.20180503.001

    CUI Weiwei, MENG Qingpeng, WANG Zhenyu, et al. Large power and high heat resistance polyetherimide polyvinylidene fluoride core-shell nanofiber lithium ion battery separator[J]. Acta Materiae Compositae Sinica,2019,36(1):69-76(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180503.001
    [27]
    MA X, QIAO F, QIAN M, et al. Facile fabrication of flexible electrodes with poly(vinylidene fluoride)/Si3N4 composite separator prepared by electrospinning for sodium-ion batteries[J]. Scripta Materialia,2021,190:153-157. doi: 10.1016/j.scriptamat.2020.08.053
    [28]
    JANAKIRAMAN S, KHALIFA M, BISWAL R, et al. High performance electrospun nanofiber coated polypropylene membrane as a separator for sodium ion batteries[J]. Journal of Power Sources,2020,460:228060. doi: 10.1016/j.jpowsour.2020.228060
    [29]
    徐玲倩, 陈关喜, 吴清洲, 等. Al2O3/PVDF无纺布锂离子电池隔膜的制备及性能表征[J]. 材料科学与工程学报, 2019, 37(5):689-696.

    XU Lingqing, CHEN Guanxi, WU Qingzhou, et al. Preparation and characterization of Al2O3/PVDF non-woven lithium ion battery separator[J]. Journal of Materials Science and Engineering,2019,37(5):689-696(in Chinese).
    [30]
    HUO H, LI X, CHEN Y, et al. Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries[J]. Energy Storage Materials,2020,29:361-366. doi: 10.1016/j.ensm.2019.12.022
    [31]
    CHEN W, LIU Y, MA Y, et al. Improved performance of PVDF-HFP/PI nanofiber membrane for lithium ion battery separator prepared by a bicomponent cross-electrospinning method[J]. Materials Letters,2014,133:67-70. doi: 10.1016/j.matlet.2014.06.163
    [32]
    CAI M, YUAN D, ZHANG X, et al. Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking[J]. Journal of Power Sources,2020,461:228123. doi: 10.1016/j.jpowsour.2020.228123
    [33]
    LIU Q, JIANG W, LU W, et al. Anisotropic semi-aligned PAN@PVDF-HFP separator for Li-ion batteries[J]. Nanotechnology,2020,31(43):435701. doi: 10.1088/1361-6528/aba303
    [34]
    ZHAO H, DENG N, KANG W, et al. Designing of multilevel-nanofibers-based organic–inorganic hybrid gel electrolyte enabling an innovative lithium-ion battery with superior ionic transport capability and advanced security[J]. Chemical Engineering Journal,2020,390:124571. doi: 10.1016/j.cej.2020.124571
    [35]
    ASGHAR M R, ANWAR M T, XIA G, et al. Cellulose/poly(vinylidene fluoride hexafluoropropylene) composite membrane with titania nanoparticles for lithium-ion batteries[J]. Materials Chemistry and Physics,2020,252:123122. doi: 10.1016/j.matchemphys.2020.123122
    [36]
    LI L, LI H, WANG Y, et al. Poly(vinylidenefluoride-hexafluoropropylene)/cellulose/carboxylic TiO2 composite separator with high temperature resistance for lithium-ion batteries[J]. Ionics,2020,26(9):4489-4497. doi: 10.1007/s11581-020-03587-5
    [37]
    LIN T Q, CHEN I W, LIU F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513. doi: 10.1126/science.aab3798
    [38]
    ZHU Z T, TANG S H, YUAN J W, et al. Effects of various binders on supercapacitor performances[J]. International Journal of Electrochemical Science,2016,11(10):8270-8279.
    [39]
    DONG J Y, WANG Z Y, KANG X H. The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors[J]. Colloids and Surfaces A—Physicochemical and Engineering Aspects,2016,489:282-288.
    [40]
    SONG D H, KIM J Y, AN J Y, et al. Graphene-based supercapacitor performance enhancement by an immersion precipitation of poly(vinylidene fluoride) binder[J]. Materials Research Express,2019,6(10):105616. doi: 10.1088/2053-1591/ab3cee
    [41]
    AVAL L F, GHORANNEVISS M, POUR G B. Graphite nanoparticles paper supercapacitor based on gel electrolyte[J]. Materials for Renewable and Sustainable Energy,2018,7(4):29. doi: 10.1007/s40243-018-0136-6
    [42]
    ORTEGA P F R, TRIGUEIRO J P C, SILVA G G, et al. Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid[J]. Electrochi-mica Acta,2016,188:809-817. doi: 10.1016/j.electacta.2015.12.056
    [43]
    AHMAD A L, FAROOQUI U R, HAMID N A. Effect of graphene oxide (GO) on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer electrolyte membrane[J]. Polymer,2018,142:330-336. doi: 10.1016/j.polymer.2018.03.052
    [44]
    YANG C Y, SUN M Q, WANG X, et al. A novel flexible supercapacitor based on cross-linked PVDF-HFP porous organogel electrolyte and carbon nanotube paper@PI-conjugated polymer film electrodes[J]. ACS Sustainable Chemistry& Engineering,2015,3(9):2067-2076.
    [45]
    SHALU, SINGH V K, SINGH R K. Development of ion conducting polymer gel electrolyte membranes based on polymer PVDF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties[J]. Journal of Materials Chemistry C,2015,3(28):7305-7318. doi: 10.1039/C5TC00940E
    [46]
    ARTHI R, JAIKUMAR V, MURALIDHARAN P. Development of electrospun PVdF polymer membrane as separator for supercapacitor applications[J]. Energy Sources Part A: Recovery, Utilization and Environmental Effects,2019,44(1):1-15.
    [47]
    WANG H, GAO H P. A sandwich-like composite nonwoven separator for Li-ion batteries[J]. Electrochimica Acta,2016,215:525-534. doi: 10.1016/j.electacta.2016.08.039
    [48]
    YANG Y Q, CHANG Z, LI M X, et al. A sodium ion conducting gel polymer electrolyte[J]. Solid State Ionics,2014,269:1-7.
    [49]
    YADAV N, MISHRA K, HASHMI S A. Nanofiller-incorporated porous polymer electrolyte for electrochemical energy storage devices[J]. High Performance Polymers,2018,30(8):957-970. doi: 10.1177/0954008318774392
    [50]
    HE T S, JIA R, LANG X S, et al. Preparation and electrochemical performance of PVdF ultrafine porous fiber separator-cum-electrolyte for supercapacitor[J]. Journal of the Electrochemical Society,2017,164(13):E379-E384. doi: 10.1149/2.0631713jes
    [51]
    RAGHAVAN P, ZHAO X, MANUEL J, et al. Electrochemical studies on polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) membranes prepared by electrospinning and phase inversion-A comparative study[J]. Materials Research Bulletin,2010,45(3):362-366. doi: 10.1016/j.materresbull.2009.12.001
    [52]
    赵世怀, 张翠翠, 杨紫博, 等. PVDF/PVA复合膜的制备与性能研究[J]. 化工新型材料, 2018, 46(5):60-63.

    ZHAO Shihuai, ZHANG Cuicui, YANG Zibo, et al. Preparation and properties of PVDF/PVA composite membranes[J]. New Chemical Materials,2018,46(5):60-63(in Chinese).
    [53]
    MALEKI H, DENG G P, KERZHNER-HALLER I, et al. Thermal stability studies of binder materials in anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society,2000,147(12):4470-4475. doi: 10.1149/1.1394088
    [54]
    EOM J Y, CAO L. Effect of anode binders on low-temperature performance of automotive lithium-ion batteries[J]. Journal of Power Sources,2019,441(2):227178.
    [55]
    ROTH E P, DOUGHTY D H, FRANKLIN J. DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders[J]. Journal of Power Sources,2004,134(2):222-234. doi: 10.1016/j.jpowsour.2004.03.074
    [56]
    ZHENG X, BOMMIER C, LUO W, et al. Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions[J]. Energy Storage Materials,2019,16:6-23. doi: 10.1016/j.ensm.2018.04.014
    [57]
    PARULEKAR S, SHOLAPURE S, HOLMUKHE R, et al. Study of PVDF Based Electrode Structure in Supercapacitors[J]. International Journal of Engineering and Technology,2018,7(4):313-315.
    [58]
    WANG B, JI J, LI K. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration[J]. Nature Communications,2016,7(1):12804. doi: 10.1038/ncomms12804
    [59]
    ARMAND M, TARASCON J M. Building better batteries[J]. Nature,2008,451(7179):652-657. doi: 10.1038/451652a
    [60]
    ZHOU Q, MA J, DONG S, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials,2019,31(50):1902029. doi: 10.1002/adma.201902029
    [61]
    ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: Advances and prospects[J]. Chem,2019,5(9):2326-2352. doi: 10.1016/j.chempr.2019.05.009
    [62]
    LONG L, WANG S, XIAO M, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A,2016,4(26):10038-10069. doi: 10.1039/C6TA02621D
    [63]
    LIU S, LIU W, BA D, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries[J]. Advanced Materials,2023,35(2):2110423. doi: 10.1002/adma.202110423
    [64]
    CHEN S, WANG J, ZHANG Z, et al. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries[J]. Journal of Power Sources,2018,387:72-80. doi: 10.1016/j.jpowsour.2018.03.016
    [65]
    CHEN S, WEN K, FAN J, et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes[J]. Journal of Materials Chemistry A,2018,6(25):11631-11663. doi: 10.1039/C8TA03358G
    [66]
    SINGH R, JANAKIRAMAN S, KHALIFA M, et al. A high thermally stable polyacrylonitrile (PAN)-based gel polymer electrolyte for rechargeable Mg-ion battery[J]. Journal of Materials Science: Materials in Electronics,2020,31(24):22912-22925. doi: 10.1007/s10854-020-04818-1
    [67]
    JEEDI V R, NARSAIAH E L, YALLA M, et al. Structural and electrical studies of PMMA and PVDF based blend polymer electrolyte[J]. Sn Applied Sciences,2020,2(12):2093. doi: 10.1007/s42452-020-03868-8
    [68]
    RAJEH A, RAGAB H M, ABUTALIB M M. Co doped ZnO reinforced PEMA/PMMA composite: Structural, thermal, dielectric and electrical properties for electrochemical applications[J]. Journal of Molecular Structure,2020,1217(7):128447.
    [69]
    LEE Y Y, LIU Y L. Crosslinked electrospun poly(vinylidene difluoride) fiber mat as a matrix of gel polymer electrolyte for fast-charging lithium-ion battery[J]. Electrochimica Acta,2017,258:1329-1335. doi: 10.1016/j.electacta.2017.11.191
    [70]
    SHAN Y, LI L, CHEN X, et al. Gentle haulers of lithium-ion–nanomolybdenum carbide fillers in solid polymer electrolyte[J]. ACS Energy Letters,2022,7(7):2289-2296. doi: 10.1021/acsenergylett.2c00849
    [71]
    JIA H, ONISHI H, VON ASPERN N, et al. A propylene carbonate based gel polymer electrolyte for extended cycle life and improved safety performance of lithium ion batteries[J]. Journal of Power Sources,2018,397:343-351. doi: 10.1016/j.jpowsour.2018.07.039
    [72]
    ZHANG Y, WANG X, FENG W, et al. Effects of the shapes of BaTiO3 nanofillers on PEO-based electrolytes for all-solid-state lithium-ion batteries[J]. Ionics,2019,25(4):1471-1480. doi: 10.1007/s11581-018-2706-0
    [73]
    MA W T, KUMAR S R, HSU C T, et al. Magnetic field-assisted alignment of graphene oxide nanosheets in a polymer matrix to enhance ionic conduction[J]. Journal of Membrane Science,2018,563:259-269. doi: 10.1016/j.memsci.2018.05.062
    [74]
    LUO J, FANG C C, WU N L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes[J]. Advanced Energy Materials,2017,8(6):1701482.
    [75]
    WAQAS M, ALI S, LV W, et al. High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries[J]. Advanced Materials Interfaces,2019,6(1):1801330. doi: 10.1002/admi.201801330
    [76]
    YANG F, SUN W, BAI Y, et al. Rational design of sandwich-like "Gel-Liquid-Gel" electrolytes for dendrite-free lithium metal batteries[J]. Industrial & Engineering Chemistry Research,2020,59(32):14207-14216.
    [77]
    NUNES-PEREIRA J, COSTA C M, LANCEROS-MENDEZ S. Polymer composites and blends for battery separators: State of the art, challenges and future trends[J]. Journal of Power Sources,2015,281(4):378-398.
    [78]
    YANG X, ZHANG F, ZHANG L, et al. A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications[J]. Advanced Functional Materials,2013,23(26):3353-3360. doi: 10.1002/adfm.201203556
    [79]
    GSAIZ P, LOPES A C, BARKER S E, et al. Ionic liquids for the control of the morphology in poly(vinylidene fluoride-co-hexafluoropropylene) membranes[J]. Materials & Design,2018,155(29):325-333.
    [80]
    BARBOSA J C, DIAS J P, LANCEROS-MENDEZ S, et al. Recent advances in poly(vinylidene fluoride) and its copolymers for lithium-ion battery separators[J]. Membranes,2018,8(3):45. doi: 10.3390/membranes8030045
    [81]
    LIN W, WANG F, WANG H, et al. Thermal-stable separators: Design principles and strategies towards safe lithium-ion battery operations[J]. ChemSusChem,2022,15(24):e202201464.
    [82]
    RAGHAVENDRA K V G, VINOTH R, ZEB K, et al. An intuitive review of supercapacitors with recent progress and novel device applications[J]. Journal of Energy Storage,2020,31(9):101652.
    [83]
    郑怡磊, 吴于松, 许远远, 等. 高性能锂离子电池隔膜的研究进展[J]. 有机氟工业, 2018, 181(4):21-26.

    ZHENG Yilei, WU Yusong, XU Yuanyuan, et al. Research progress of high-performance lithium-ion battery separator[J]. Organic-Fluorine Industry,2018,181(4):21-26(in Chinese).
    [84]
    COSTA C M, SILVA M M, LANCEROS-MENDEZ S. Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications[J]. RSC Advances,2013,3(29):11404-11417. doi: 10.1039/c3ra40732b
    [85]
    WANG S X, YAP C C, HE J, et al. Electrospinning: A facile technique for fabricating functional nanofibers for environmental applications[J]. Nanotechnology Reviews,2016,5(1):51-73.
    [86]
    WU Y S, YANG C C, LUO S P, et al. PVDF-HFP/PET/PVDF-HFP composite membrane for lithium-ion power batteries[J]. International Journal of Hydrogen Energy,2017,42(10):6862-6875. doi: 10.1016/j.ijhydene.2016.11.201
    [87]
    ALI S, TAN C, WAQAS M, et al. Highly efficient PVDF-HFP/colloidal alumina composite separator for high-temperature lithium-ion batteries[J]. Advanced Materials Interfaces,2018,5(5):1701147. doi: 10.1002/admi.201701147
    [88]
    SZUBZDA B, SZMAJA A, OZIMEK M, et al. Polymer membranes as separators for supercapacitors[J]. Applied Physics A-Materials Science & Processing,2014,117(4):1801-1809.
    [89]
    WANG J A, LIN S C, WANG Y S, et al. Bi-functional water-born polyurethane-potassium poly(acrylate) designed for carbon-based electrodes of quasi solid-state supercapacitors: Establishing ionic tunnels and acting as a binder[J]. Journal of Power Sources,2019,413(21):77-85.
    [90]
    HASHIM M A, SA'ADU L, BAHARUDDIN M B, et al. Using PVA, methacrylate and lauroyl chitosan as separator in supercapacitors[J]. Journal of Materials Science Research, 2013, 3(1): 25-29.
    [91]
    NA R Q, ZHANG X R, HUO P F, et al. High performance disulfonated poly(arylene ether sulfone)/poly(ethylene oxide) composite membrane used as a novel separator for supercapacitor with neutral electrolyte and activated carbon electrodes[J]. High Performance Polymers,2017,29(8):984-993. doi: 10.1177/0954008316666386
    [92]
    KARABELLI D, LEPRETRE J C, ALLOIN F, et al. Poly(vinylidene fluoride)-based macroporous separators for supercapacitors[J]. Electrochimica Acta,2011,57(1):98-103.
    [93]
    JABBARNIA A, KHAN W S, GHAZINEZAMI A, et al. Investigating the thermal, mechanical, and electrochemical properties of PVdF/PVP nanofibrous membranes for supercapacitor applications[J]. Journal of Applied Polymer Science,2016,133(30):43707.
    [94]
    JAKRIYA S P, SYED A M, PILLAI S K, et al. High-performance poly(vinylidene fluoride-co-hexafluoropropylene) based electrospun polyelectrolyte mat for lithium-ion battery[J]. Materials Express,2018,8(1):77-84. doi: 10.1166/mex.2018.1405
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (773) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return