Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
KONG Yajie, TANG Mingyu, FU Wanlin, et al. Research progress in the preparation and application of photonic crystal fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5486-5501. doi: 10.13801/j.cnki.fhclxb.20230423.002
Citation: KONG Yajie, TANG Mingyu, FU Wanlin, et al. Research progress in the preparation and application of photonic crystal fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5486-5501. doi: 10.13801/j.cnki.fhclxb.20230423.002

Research progress in the preparation and application of photonic crystal fibers

doi: 10.13801/j.cnki.fhclxb.20230423.002
Funds:  Project of Six Talents Climax Foundation of Jiangsu (XCL-082); Priority Academic Program Development of Jiangsu Higher Education Institutions
  • Received Date: 2023-02-23
  • Accepted Date: 2023-04-08
  • Rev Recd Date: 2023-03-23
  • Available Online: 2023-04-23
  • Publish Date: 2023-10-15
  • Photonic crystal (PC) is a structure formed by the periodic arrangement of dielectric materials. Due to its distinct photoregulatory features, it has drawn significant attention in the realm of optics and photonics. From the structure, mechanism, material, and functional application, people have carried out in-depth research and continuous development. Because of their large specific surface area and customizable three-dimensional structure, photonic crystal fibers (PCFs) in particular provide new opportunities for the development of detecting sensing, smart wearables, photoelectric transmission, and other sectors. In this paper, the structure and color mechanism of PC, basic materials, preparation methods, and applications of PCFs are reviewed. The contribution of electrostatic spinning technology in the field of PCFs is highlighted, as are the functional applications of PCFs in textile printing and dyeing, intelligent response, sensing detection, and hydrophobic regulation are discussed. Finally, the problems in macro preparation and practical production application of PCFs are pointed out, and the possible research focus and direction in the future have prospected.

     

  • loading
  • [1]
    WU Y, WANG Y, ZHANG S F, et al. Artificial chameleon skin with super-sensitive thermal and mechanochromic response[J]. ACS Nano,2021,15(10):15720-15729. doi: 10.1021/acsnano.1c05612
    [2]
    ISAPOUR G, LATTUADA M. Bioinspired stimuli-responsive color-changing systems[J]. Advanced Materials,2018,30(19):e1707069. doi: 10.1002/adma.201707069
    [3]
    BIAN F K, SUN L Y, CHEN H X, et al. Bioinspired perovskite nanocrystals-integrated photonic crystal microsphere arrays for information security[J]. Advanced Science,2022,9(9):e2105278. doi: 10.1002/advs.202105278
    [4]
    GONG X B, HOU C Y, ZHANG Q H, et al. Thermochromic hydrogel-functionalized textiles for synchronous visual monitoring of on-demand in vitro drug release[J]. ACS Applied Materials & Interfaces,2020,12(46):51225-51235.
    [5]
    LIU W, MA H L, WALSH A. Advance in photonic crystal solar cells[J]. Renewable and Sustainable Energy Reviews,2019,116:109436. doi: 10.1016/j.rser.2019.109436
    [6]
    YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters,1987,58(20):2059-2062. doi: 10.1103/PhysRevLett.58.2059
    [7]
    JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters,1987,58(23):2486-2489. doi: 10.1103/PhysRevLett.58.2486
    [8]
    HUANG M L, LU S G, REN Y C, et al. Structural coloration and its application to textiles: A review[J]. The Journal of the Textile Institute,2019,111(5):756-764.
    [9]
    SUN J Y, BHUSHAN B, TONG J. Structural coloration in nature[J]. RSC Advances,2013,3(35):14862-14889. doi: 10.1039/c3ra41096j
    [10]
    周敬伊, 王慧, 杨辉宇, 等. 光子晶体结构色织物研究进展[J]. 化学通报, 2021, 84(10):1008-1022. doi: 10.14159/j.cnki.0441-3776.2021.10.002

    ZHOU Jingyi, WANG Hui, YANG Huiyu, et al. Research progress in photonic crystal induced structural colored fabrics[J]. Chemistry Bulletin,2021,84(10):1008-1022(in Chinese). doi: 10.14159/j.cnki.0441-3776.2021.10.002
    [11]
    ROTHAMMER M, ZOLLFRANK C, BUSCH K, et al. Tailored disorder in photonics: Learning from nature[J]. Advanced Optical Materials,2021,9(19):2100787. doi: 10.1002/adom.202100787
    [12]
    KIM G H, AN T, LIM G. Fabrication of optical switching patterns with structural colored microfibers[J]. Nanoscale Research Letters,2018,13:204. doi: 10.1186/s11671-018-2614-2
    [13]
    陈欢欢, 高伟洪, 陈凯凯, 等. 光子晶体结构色纺织材料的制备及应用研究进展[J]. 化工进展, 2022, 41(8):4327-4340.

    CHEN Huanhuan, GAO Weihong, CHEN Kaikai, et al. Research progress on the fabrication and application of textile materials with photonic crystal structural colors[J]. Chemical Industry and Engineering Progress,2022,41(8):4327-4340(in Chinese).
    [14]
    SHANG S L, ZHU P, WANG H Z, et al. Thermally responsive photonic fibers consisting of chained nanoparticles[J]. ACS Applied Materials & Interfaces,2020,12(45):50844-50851. doi: 10.1021/acsami.0c14749
    [15]
    WU X J, LAN D P, ZHANG R F, et al. Fabrication of opaline ZnO photonic crystal film and its slow-photon effect on photoreduction of carbon dioxide[J]. Langmuir,2019,35(1):194-202. doi: 10.1021/acs.langmuir.8b03327
    [16]
    WANG F, FENG L, QIN Y, et al. Dual functional SiO2@TiO2 photonic crystals for dazzling structural colors and enhanced photocatalytic activity[J]. Journal of Materials Chemistry C,2019,7(38):11972-11983. doi: 10.1039/C9TC03426A
    [17]
    YANG D Q, LUO W J, HUANG Y D, et al. Facile synthesis of monodispersed SiO2@Fe3O4 core-shell colloids for printing and three-dimensional coating with noniridescent structural colors[J]. ACS Omega,2019,4(1):528-534. doi: 10.1021/acsomega.8b02987
    [18]
    ZHENG L L, TRAN T N T, ZHALMURATOVA D, et al. Colorimetric voltmeter using colloidal Fe3O4@SiO2 nanoparticles as an overpotential alarm system for zinc-air batteries[J]. ACS Applied Nano Materials,2019,2(11):6982-6988. doi: 10.1021/acsanm.9b01464
    [19]
    LIU T Y, LIU T Y, GAO F Y, et al. Structural color spectral response of dense structures of discoidal particles generated by evaporative assembly[J]. Journal of Physical Chemistry B,2022,126(6):1315-1324. doi: 10.1021/acs.jpcb.1c10015
    [20]
    FATHI F, CHAGHAMIRZAEI P, ALLAHVEISI S, et al. Investigation of optical and physical property in opal films prepared by colloidal and freeze-dried microspheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,611:125842. doi: 10.1016/j.colsurfa.2020.125842
    [21]
    WANG X H, LI Y C, ZHENG J Y, et al. Polystyrene@poly(methyl methacrylate-butyl acrylate) core-shell nanoparticles for fabricating multifunctional photonic crystal films as mechanochromic and solvatochromic sensors[J]. ACS Applied Nano Materials,2022,5(1):729-736. doi: 10.1021/acsanm.1c03474
    [22]
    HUANG Y, LIU L X, YANG X, et al. A diverse micromorphology of photonic crystal chips for multianalyte sensing[J]. Small,2021,17(12):e2006723. doi: 10.1002/smll.202006723
    [23]
    DONG X, ZHANG Z L, ZHAO Y Y, et al. Bio-inspired non-iridescent structural coloration enabled by self-assembled cellulose nanocrystal composite films with balanced ordered/disordered arrays[J]. Composites Part B: Engineering,2022,229:109456. doi: 10.1016/j.compositesb.2021.109456
    [24]
    LAI X T, PENG J S, CHENG Q F, et al. Bioinspired color switchable photonic crystal silicone elastomer kirigami[J]. Angewandte Chemie, International Edition in English,2021,60(26):14307-14312. doi: 10.1002/anie.202103045
    [25]
    LIU J C, WANG Y, WANG J X, et al. Inkless rewritable photonic crystals paper enabled by a light-driven azobenzene mesogen switch[J]. ACS Applied Materials & Interfaces,2021,13(10):12383-12392.
    [26]
    CHEN J L, LIU P M, DU X, et al. Clickable colloidal photonic crystals for structural color pattern[J]. Langmuir,2018,34(44):13219-13224. doi: 10.1021/acs.langmuir.8b00996
    [27]
    MA W, KOU Y S, ZHAO P, et al. Bioinspired structural color patterns derived from 1D photonic crystals with high saturation and brightness for double anti-counterfeiting decoration[J]. ACS Applied Polymer Materials,2020,2(4):1605-1613. doi: 10.1021/acsapm.0c00047
    [28]
    ZHAO K, CAO X F, ALSAID Y, et al. Interactively mechano chromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics[J]. Chemical Engineering Journal,2021,426(22):130870. doi: 10.1016/j.cej.2021.130870
    [29]
    HUANG H W, LI H T , SHEN X Q, et al. Gecko-inspired smart photonic crystal films with versatile color and brightness variation for smart windows[J]. Chemical Engineering Journal,2022,429:132437. doi: 10.1016/j.cej.2021.132437
    [30]
    李壮, 金梦婷, 须秋洁, 等. SiO2溶胶对P(St-MAA)光子晶体生色结构的稳固性增强作用[J]. 复合材料学报, 2022, 39(2):637-644.

    LI Zhuang, JIN Mengting, XU Qiujie, et al. Stability enhancement of P(St-MAA) photonic crystals with structural colors by using SiO2 sol[J]. Acta Materiae Compositae Sinica,2022,39(2):637-644(in Chinese).
    [31]
    ZHANG Y L, WANG Y, WANG H, et al. Super-elastic magnetic structural color hydrogels[J]. Small,2019,15(35):e1902198. doi: 10.1002/smll.201902198
    [32]
    YUAN W, ZHOU N, SHI L, et al. Structural coloration of colloidal fiber by photonic band gap and resonant Mie scattering[J]. ACS Applied Materials & Interfaces,2015,7(25):14064-14071.
    [33]
    LI G X, SHEN H X, LI Q, et al. Fabrication of colorful colloidal photonic crystal fibers via a microfluidic spinning technique[J]. Materials Letters,2019,242:179-182. doi: 10.1016/j.matlet.2019.01.093
    [34]
    MOON J H, KIM S, YI G R, et al. Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries[J]. Langmuir,2004,20(5):2033-2035. doi: 10.1021/la0358015
    [35]
    YUAN W, LI Q S, ZHOU N, et al. Structural color fibers directly drawn from colloidal suspensions with controllable optical properties[J]. ACS Applied Materials & Interfaces,2019,11(21):19388-19396.
    [36]
    WANG C Y, WANG S L, PAN H, et al. Bioinspired liquid gating membrane-based catheter with anticoagulation and positionally drug release properties[J]. Science Advance,2020,6(36):eabb4700.
    [37]
    WANG C Y, HOU Y Q, WANG X Y, et al. Structural and interfacial effects on drug release kinetics of liquid-based fibrous catheter[J]. Advanced Fiber Materials,2022,4(6):1645-1655. doi: 10.1007/s42765-022-00201-3
    [38]
    LEI W, LI H, TANG Y X, et al. Progress and perspectives on electrospinning techniques for solid-state lithium batteries[J]. Carbon Energy,2022,4(4):539-575. doi: 10.1002/cey2.180
    [39]
    CHEN L, YU Q W, PAN C Y, et al. Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review[J]. Talanta,2022,246:123527. doi: 10.1016/j.talanta.2022.123527
    [40]
    王喜花, 刘涛, 黄丽, 等. 静电纺丝技术制备复合纳米纤维电磁屏蔽及吸波材料的研究进展[J]. 复合材料学报, 2022, 40(3):1286-1297.

    WANG Xihua, LIU Tao, HUANG Li, et al. Research progress for preparation of composite nanofiber electromagnetic shielding and absorbing materials by electrostatic spinning technology[J]. Acta Materiae Compositae Sinica,2022,40(3):1286-1297(in Chinese).
    [41]
    XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews,2019,119(8):5298-5415. doi: 10.1021/acs.chemrev.8b00593
    [42]
    刘桦, 王昊, 张程, 等. 无机纳米粒子/聚合物复合电纺纤维的制备及其仿生矿化研究[J]. 材料研究与应用, 2020, 14(4):294-300.

    LIU Hua, WANG Hao, ZHANG Cheng, et al. The preparation and biomimetic mineralization of inorganic nanoparticles/polymer composite nanofibers[J]. Materials Research and Application,2020,14(4):294-300(in Chinese).
    [43]
    YUAN W, ZHANG K Q. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles[J]. Langmuir,2012,28(43):15418-15424. doi: 10.1021/la303312q
    [44]
    YUAN S J, MENG W H, DU A H, et al. Direct-writing structure color patterns on the electrospun colloidal fibers toward wearable materials[J]. Chinese Journal of Polymer Science,2019,37(8):729-736. doi: 10.1007/s10118-019-2286-0
    [45]
    肖浪. 金属纳米颗粒表面等离激元作用下的结构色纤维研究[D]. 苏州: 苏州大学, 2014.

    XIAO Lang. Fabrication research of structurally-colored fibers basing on metal nanoparticles SPPs mechanism[D]. Suzhou: Soochow University, 2014(in Chinese).
    [46]
    CHENG X T, LIU Y T, SI Y, et al. Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning[J]. Nature Communications,2022,13(1):2637. doi: 10.1038/s41467-022-30435-z
    [47]
    BIAN F K, SUN L Y, CAI L J, et al. Colloidal crystals from microfluidics[J]. Small,2020,16(9):e1903931. doi: 10.1002/smll.201903931
    [48]
    ZHANG Y, TIAN Y, XU L L, et al. Facile fabrication of structure-tunable bead-shaped hybrid microfibers using a rayleigh instability guiding strategy[J]. Chemical Communications (Cambridge, England),2015,51(99):17525-17528. doi: 10.1039/C5CC08263C
    [49]
    CHENG Y, ZHANG X X, LIU R, et al. Bioinspired vascular stents with microfluidic electrospun multilayer coatings for preventing in-stent restenosis[J]. Advanced Healthcare Materials,2022,11(17):e2200965. doi: 10.1002/adhm.202200965
    [50]
    JIN J, SAIDING Q, WANG X J, et al. Rapid extracellular matrix remodeling via gene-electrospun fibers as a "patch" for tissue regeneration[J]. Advanced Functional Materials,2021,31(15):2009879. doi: 10.1002/adfm.202009879
    [51]
    FINLAYSON C E, GODDARD C, PAPACHRISTODOULOU E, et al. Ordering in stretch-tunable polymeric opal fibers[J]. Optics Express,2011(19):3144-3154.
    [52]
    BOYLE B M, FRENCH T A, PEARSON R M, et al. Structural color for additive manufacturing: 3D-printed photonic crystals from block copolymers[J]. ACS Nano,2017,11(3):3052-3058. doi: 10.1021/acsnano.7b00032
    [53]
    KOLLE M, LETHBRIDGE A, KREYSING M, et al. Bio-inspired band-gap tunable elastic optical multilayer fibers[J]. Advanced Materials,2013,25(15):2239-2245. doi: 10.1002/adma.201203529
    [54]
    ZHANG J, HE S S, LIU L M, et al. The continuous fabrication of mechanochromic fibers[J]. Journal of Materials Chemistry C,2016,4(11):2127-2133. doi: 10.1039/C5TC04073F
    [55]
    LIU Z F, ZHANG Q H, WANG H Z, et al. Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method[J]. Nanoscale,2013,5(15):6917-6922. doi: 10.1039/c3nr01766d
    [56]
    ZHAO Y L, LI R, WANG B S, et al. Scalable structural coloration of carbon nanotube fibers via a facile silica photonic crystal self-assembly strategy[J]. ACS Nano,2023,17(3):2893-2900. doi: 10.1021/acsnano.2c11296
    [57]
    HAN C, KIM H, JUNG H, et al. Origin and biomimicry of weak iridescence in black-billed magpie feathers[J]. Optica,2017,4(4):464-467. doi: 10.1364/OPTICA.4.000464
    [58]
    HE Y Y, LIU L Y, FU Q Q, et al. Precise assembly of highly crystalline colloidal photonic crystals inside the polyester yarns: A spray coating synthesis for breathable and dur- able fabrics with saturated structural colors[J]. Advanced Functional Materials,2022,32(24):2200330. doi: 10.1002/adfm.202200330
    [59]
    ZHOU C T, QI Y, ZHANG S F, et al. Rapid fabrication of vivid noniridescent structural colors on fabrics with robust structural stability by screen printing[J]. Dyes and Pigments,2020,176:108226. doi: 10.1016/j.dyepig.2020.108226
    [60]
    LIU G J, ZHOU L, ZHANG G Q, et al. Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using ink-jet printing technology[J]. Materials & Design,2017,114:10-17.
    [61]
    NIU W B, ZHANG L L, WANG Y P, et al. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management[J]. ACS Applied Materials & Interfaces,2019,11(35):32261-32268.
    [62]
    GONG X B, HOU C Y, ZHANG Q H, et al. Solvatochromic structural color fabrics with favorable wearability properties[J]. Journal of Materials Chemistry C,2019,7(16):4855-4862. doi: 10.1039/C9TC00580C
    [63]
    LI Y C, FAN Q S, WANG X H, et al. Shear-induced assembly of liquid colloidal crystals for large-scale structural coloration of textiles[J]. Advanced Functional Materials,2021,31(19):2010746. doi: 10.1002/adfm.202010746
    [64]
    WANG H, ZHANG H, CHEN Z Y, et al. Polymer-based responsive structural color materials[J]. Progress in Materials Science,2023,135:101091. doi: 10.1016/j.pmatsci.2023.101091
    [65]
    ZHAO R L, HE Y, HE Y, et al. Dual-mode fiber strain sensor based on mechanochromic photonic crystal and transparent conductive elastomer for human motion detection[J]. ACS Applied Materials & Interfaces,2023,15(12):16063-16071.
    [66]
    CHEN Z Y, YU Y R, GUO J H, et al. Heterogeneous structural color microfibers for cardiomyocytes tug-of-war[J]. Advanced Functional Materials,2021,31(9):2007527. doi: 10.1002/adfm.202007527
    [67]
    CHENG J, ZHANG L L, ZHAO K, et al. Flexible multifunctional photonic crystal fibers with shape memory capability for optical waveguides and electrical sensors[J]. Industrial & Engineering Chemistry Research,2021,60(23):8442-8450.
    [68]
    GAO B B, HE Z Z, HE B F, et al. Wearable eye health monitoring sensors based on peacock tail-inspired inverse opal carbon[J]. Sensors and Actuators B: Chemical,2019,288:734-741. doi: 10.1016/j.snb.2019.03.029
    [69]
    YU Y R, FU F F, SHANG L R, et al. Bioinspired helical microfibers from microfluidics[J]. Advanced Materials,2017,29(18):1605765. doi: 10.1002/adma.201605765
    [70]
    YU X Q, HU X H, ZHU L L, et al. Fabrication of magnetically driven photonic crystal fiber film via microfluidic blow-spinning towards dynamic biomimetic butterfly[J]. Materials Letters,2021,291:129450. doi: 10.1016/j.matlet.2021.129450
    [71]
    KHUDIYEV T, DOGAN T, BAYINDIR M. Biomimicry of multifunctional nanostructures in the neck feathers of mallard (Anas platyrhynchos L. ) drakes[J]. Scientific Reports,2014,4(4):4718.
    [72]
    BERTONCINI A, LIBERALE C. 3D printed waveguides based on photonic crystal fiber designs for complex fiber-end photonic devices[J]. Optica,2020,7(11):1487-1494. doi: 10.1364/OPTICA.397281
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views (684) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return