Volume 40 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
WANG Limeng, LI Yaru, REN Yongpeng, et al. Research progress of MXene based materials in the field of electrocatalysis[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4917-4931. doi: 10.13801/j.cnki.fhclxb.20230418.002
Citation: WANG Limeng, LI Yaru, REN Yongpeng, et al. Research progress of MXene based materials in the field of electrocatalysis[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4917-4931. doi: 10.13801/j.cnki.fhclxb.20230418.002

Research progress of MXene based materials in the field of electrocatalysis

doi: 10.13801/j.cnki.fhclxb.20230418.002
Funds:  National Natural Science Foundation of China (51901069); The Program for Science & Technology Innovation Talents in the University of Henan Province (22HASTIT1006); The Program for Central Plains Talents (ZYYCYU202012172); The Ministry of Education, Singapore (AcRF Tier 1, Grant No. RG70/20)
  • Received Date: 2023-01-06
  • Accepted Date: 2023-04-08
  • Rev Recd Date: 2023-04-06
  • Available Online: 2023-04-18
  • Publish Date: 2023-09-15
  • Electrocatalysis is the key technology of new energy storage and conversion in the future, which is mainly used in hydrogen energy industries such as hydrogen production by water electrolysis and fuel cells. MXene is a general term for two-dimensional layered transition metal carbides, nitrides and carbonitrides. It has high conductivity, large specific surface area, good charge transfer ability as well as rich and controllable surface functional groups, which has been widely used in the field of electrochemical catalysis in recent years. In this paper, the multiple structures of two-dimensional MXene are described firstly, and then the advantages of MXene based electrocatalytic materials in hydrophilicity, conductivity, ion transport and surface defects are summarized, with emphasis on the application and progress of MXene based materials in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and other catalytic reactions in recent years, The relationship between MXene structure and performance is revealed. Finally, the future development prospect is summarized and prospected.

     

  • loading
  • [1]
    DAI J, CHEN B, SCIUBBA E. Ecological accounting based on extended exergy: A sustai-nability perspective[J]. Environmental Science Technology,2014,48(16):9826-9833. doi: 10.1021/es404191v
    [2]
    王家佩, 江松, 丛野, 等. 基于MXenes材料的电催化析氢研究进展[J]. 硅酸盐通报, 2020, 39(12):4022-4033. doi: 10.16552/j.cnki.issn1001-1625.2020.12.040

    WANG Jiapei, JIANG Song, CONG Ye, et al. Research progress in electrocatalytic hydrogen evolution based on MXenes materials[J]. Silicate Bulletin of the Chinese Ceramic Society,2020,39(12):4022-4033(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2020.12.040
    [3]
    王佳佳, 喻兰兰, 胡霞, 等. 二维纳米材料MXenes及其复合物在电催化领域中的应用研究进展[J]. 材料工程, 2022, 50(1):43-45.

    WANG Jiajia, YU Lanlan, HU Xia, et al. Research progress in the application of two-dimensional nano-materials MXenes and their composites in the field of electrocatalysis[J]. Journal of Materials Engineering,2022,50(1):43-45(in Chinese).
    [4]
    刘艳明. 硼氮掺杂纳米金刚石和多孔碳的制备及其电催化还原性能[D]. 大连: 大连理工大学, 2016.

    LIU Yanming. Preparation of boron-nitrogen doped nano-diamond and porous carbon and their electro-catalytic reduction performance[D]. Dalian: Dalian University of Technology, 2016(in Chinese).
    [5]
    BAI S S, YANG M Q, JIANG J Z, et al. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction[J]. npj 2D Materials and Applications, 2021, 5(1): 1-15.
    [6]
    李小丽, 薛文明, 莫容, 等. 微量铱掺杂CoxNi1−xO纳米线阵列的制备及其电催化性能[J]. 中国催化杂志, 2019, 40(10):1576-1584. doi: 10.1016/S1872-2067(19)63414-5

    LI Xiaoli, XUE Wenming, MO Rong, et al. In situ growth of minimal Ir-incorporated CoxNi1−xO nanowire arrays on Ni foam with improved electrocatalytic activity for overall water splitting[J]. Chinese Journal of Catalysis,2019,40(10):1576-1584(in Chinese). doi: 10.1016/S1872-2067(19)63414-5
    [7]
    于博, 李研, 刘辉, 等. NiCoP合金纳米棒阵列制备及电催化析氢性能研究[J]. 人工晶体学报, 2020, 49(2): 270-275.

    YU Bo, LI Yan, LIU Hui, et al. Preparation of NiCoP alloy nanorod array and study on its electrocatalytic hydrogen evolution performance[J]. Journal of Artificial Lens, 2020, 49(2): 270-275(in Chinese).
    [8]
    ZHU J, HU L, ZHAO P, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews,2019,120(2):851-918.
    [9]
    NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals: Two dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [10]
    ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes)[J]. ACS Nano,2015,9(10):9507-9516. doi: 10.1021/acsnano.5b03591
    [11]
    SANG X, XIE Y, SUN W, et al. In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides[J]. Nature Communications,2018,9(1):1-9. doi: 10.1038/s41467-017-02088-w
    [12]
    NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano,2012,6(2):1322-1331. doi: 10.1021/nn204153h
    [13]
    NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society,2013,135(43):15966-15969. doi: 10.1021/ja405735d
    [14]
    KAMYSBAYEV V, FILATOV A S, HU H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science,2020,369(6506):979-983. doi: 10.1126/science.aba8311
    [15]
    CHEN X, LI M, HOU J, et al. Molten salt method synthesis of multivalent cobalt and oxygen vacancy modified nitrogen-doped MXene as highly efficient hydrogen and oxygen evolution reaction electrocatalysts[J]. Journal of Colloid and Interface Science,2022,615:831-839. doi: 10.1016/j.jcis.2022.02.010
    [16]
    姚峰, 卞琳艳, 范燕平, 等. 二维MXenes的制备及催化产氢性能研究进展[J]. 河南化工, 2021, 38(9): 1-6.

    YAO Feng, BIAN Linyan, FAN Yanping, et al, Progress in the preparation of two-dimensional MXenes and their catalytic performance for hydrogen production[J]. Henan Chemical Industry, 2021, 38(9): 1-6(in Chinese).
    [17]
    PETRUHINS A, LU J, HULTMAN L, et al. Synthesis of atomically layered and chemically ordered rare earth (RE) i-MAX phases; (Mo2/3RE1/3)2GaC with RE= Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu[J]. Materials Research Letters,2019,7(11):446-452. doi: 10.1080/21663831.2019.1644684
    [18]
    SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases[J]. Trends in Chemistry, 2019, 1(2): 210-223.
    [19]
    THADATHIL A, KAVIL J, KOVUMMAL G R, et al. Facile synthesis of polyindole/Ni1–xZnxFe2O4 (x=0, 0.5, 1) nanocomposites and their enhanced microwave absorption and shielding properties[J]. ACS Omega,2022,7(13):11473-11490. doi: 10.1021/acsomega.2c00824
    [20]
    HAN M, YANG J, JIANG J, et al. Efficient tuning the electronic structure of N-doped Ti-based MXene to enhance hydrogen evolution reaction[J]. Journal of Colloid and Interface Science,2021,582:1099-1106. doi: 10.1016/j.jcis.2020.09.001
    [21]
    LING C, SHI L, OUYANG Y, et al. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor[J]. Chemistry of Materials,2016,28(24):9026-9032. doi: 10.1021/acs.chemmater.6b03972
    [22]
    YOON Y, TIWARI A P, CHOI M, et al. Precious-metal-free electrocatalysts for activation of hydrogen evolution with nonmetallic electron donor: Chemical composition controllable phosphorous doped vanadium carbide MXene[J]. Advanced Functional Materials,2019,29(30):1903443. doi: 10.1002/adfm.201903443
    [23]
    LI Y, LI L, HUANG R, et al. Computational screening of pristine and functionalized ordered TiVC MXenes as highly efficient anode materials for lithium-ion batteries[J]. Nanoscale,2021,13(5):2995-3001. doi: 10.1039/D0NR08271F
    [24]
    PENG J, CHEN X, ONG W J, et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis[J]. Chem,2019,5(1):18-50. doi: 10.1016/j.chempr.2018.08.037
    [25]
    XU B, HOU S, DUAN H, et al. Ultramicroporous carbon as electrode material for supercapacitors[J]. Journal of Power Sources,2013,228:193-197. doi: 10.1016/j.jpowsour.2012.11.122
    [26]
    李雪梅. MXene/NF载体上三维花状NiCo-LDH的制备及其电催化性能研究[D]. 桂林: 桂林理工大学, 2021.

    LI Xuemei. Preparation and electrocatalytic properties of three-dimensional flower-shaped NiCo-LDH on MXene/NF supports[D]. Guilin: Guilin University of Technology, 2021(in Chinese).
    [27]
    VOROBYEVA E, FAKO E, CHEN D Z, et al. Atom-by-atom resolution of structure function relations over low-nuclearity metal catalysts[J]. Angewandte Chemie,2019,131(26):8816-8821. doi: 10.1002/ange.201902136
    [28]
    DING L, WEI Y, WANG Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition,2017,56(7):1825-1829. doi: 10.1002/anie.201609306
    [29]
    GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970
    [30]
    LUKATSKAYA M R, KOTA S, LIN Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy,2017,2(8):1-6.
    [31]
    ZHANG X, ZHAO X, WU D, et al. High and anisotropic carrier mobility in experimentally possible Ti2CO2(MXene) monolayers and nanoribbons[J]. Nanoscale,2015,7(38):16020-16025. doi: 10.1039/C5NR04717J
    [32]
    SHAHZAD F, IQBAL A, KIM H, et al. 2D transition metal carbides (MXenes): Applications as an electrically conducting material[J]. Advanced Materials,2020,32(51):2002159. doi: 10.1002/adma.202002159
    [33]
    LI Y, YIN Z, JI G, et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity[J]. Applied Catalysis B: Environmental,2019,246:12-20. doi: 10.1016/j.apcatb.2019.01.051
    [34]
    DJIRE A, WANG X, XIAO C, et al. Basal plane hydrogen evolution activity from mixed metal nitride MXenes measured by scanning electrochemical microscopy[J]. Advanced Functional Materials,2020,30(47):2001136. doi: 10.1002/adfm.202001136
    [35]
    WU J, LIU J, CUI J, et al. Dual-phase MoS2 as a high-performance sodiumion battery anode[J]. Journal of Materials Chemistry A,2020,8(4):2114-2122. doi: 10.1039/C9TA11913B
    [36]
    ZHANG S, YING H, GUO R, et al. Vapor deposition red phosphorus to prepare nitrogen-doped Ti3C2Tx MXenes composites for lithium-ion batteries[J]. The Journal of Physical Chemistry Letters,2019,10(21):6446-6454. doi: 10.1021/acs.jpclett.9b02335
    [37]
    JIANG Y, SUN T, XIE X, et al. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution[J]. ChemSusChem,2019,12(7):1368-1373. doi: 10.1002/cssc.201803032
    [38]
    CHU K, LI X, LI Q, et al. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene[J]. Small,2021,17(40):2102363. doi: 10.1002/smll.202102363
    [39]
    WANG J, GUAN Y, ZHANG Q, et al. Well-dispersed ultrafine Pt nanoparticles anchored on oxygen-rich surface of V2CTx (MXene) for boosting hydrogen evolution reaction[J]. Applied Surface Science,2022,582:152481. doi: 10.1016/j.apsusc.2022.152481
    [40]
    SOUNDIRARAJU B, GEORGE B K. Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface enhanced Raman scattering substrate[J]. ACS Nano,2017,11(9):8892-8900. doi: 10.1021/acsnano.7b03129
    [41]
    DJIRE A, ZHANG H, LIU J, et al. Electrocatalytic and optoelectronic characteristics of the two-dimensional titanium nitride Ti4N3Tx MXene[J]. ACS Applied Materials& Interfaces,2019,11(12):11812-11823.
    [42]
    SHERRYNA A, TAHIR M. Role of Ti3C2 MXene as prominent schottky barriers in driving hydrogen production through photoind-uced water splitting: A comprehensive review[J]. ACS Applied Energy Materials,2021,4(11):11982-12006. doi: 10.1021/acsaem.1c02241
    [43]
    WANG H, WU Y, YUAN X, et al. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges[J]. Advanced Materials,2018,30(12):1704561. doi: 10.1002/adma.201704561
    [44]
    GAO G, O’MULLANE A P, DU A. 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction[J]. ACS Catalysis,2017,7(1):494-500. doi: 10.1021/acscatal.6b02754
    [45]
    YU M, ZHOU S, WANG Z, et al. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene[J]. Nano Energy,2018,44:181-190. doi: 10.1016/j.nanoen.2017.12.003
    [46]
    LIN H, CHEN L, LU X, et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction[J]. Science China Materials,2019,62(5):662-670. doi: 10.1007/s40843-018-9378-3
    [47]
    LI N, CHEN X, ONG W J, et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes)[J]. ACS Nano,2017,11(11):10825-10833. doi: 10.1021/acsnano.7b03738
    [48]
    LUO Y, CHEN G F, DING L, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions[J]. Joule,2019,3(1):279-289. doi: 10.1016/j.joule.2018.09.011
    [49]
    LIU A, LIANG X, REN X, et al. Recent progress in MXene-based materials: Potential high-performance electrocatalysts[J]. Advanced Functional Materials,2020,30(38):2003437. doi: 10.1002/adfm.202003437
    [50]
    KUANG P, HE M, ZHU B, et al. 0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution[J]. Journal of Catalysis,2019,375:8-20. doi: 10.1016/j.jcat.2019.05.019
    [51]
    胡素敏. 钼基异金属硫/硒化物电极的构建与电催化析氢应用[D]. 哈尔滨: 哈尔滨理工大学, 2022.

    HU Sumin. Construction of molybdenum based heterometallic sulfur/selenide electrode and application of electrocatalytic hydrogen evolution[D]. Harbin: Harbin Institute of Technology, 2022(in Chinese).
    [52]
    李筱霏, 赵恩德, 彭少波, 等. MOF衍生CoSe2基电催化剂的制备及其电解水性能研究进展[J]. 复合材料学报, 2023, 40(8):4374-4389.

    LI Xiaofei, ZHAO Ende, PENG Shaobo, et al. Research progress of synthesis of metal organic framework derived CoSe2-based electrocatalysts for overall water splitting[J]. Acta Materiae Compositae Sinica,2023,40(8):4374-4389(in Chinese).
    [53]
    WEI Y, SOOMRO R A, XIE X, et al. Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes[J]. Journal of Energy Chemistry,2021,55:244-255. doi: 10.1016/j.jechem.2020.06.069
    [54]
    YUAN Y, LI H, WANG L, et al. Achieving highly efficient catalysts for hydrogen evolution reaction by electronic state modification of platinum on versatile Ti3C2Tx (MXene)[J]. ACS Sustainable Chemistry & Engineering,2019,7(4):4266-4273.
    [55]
    LI Z, QI Z, WANG S, et al. In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions[J]. Nano Letters,2019,19(8):5102-5108. doi: 10.1021/acs.nanolett.9b01381
    [56]
    JIANG Y, WU X, YAN Y, et al. Coupling PtNi ultrathin nanowires with MXenes for boosting electrocatalytic hydrogen evolution in both acidic and alkaline solutions[J]. Small,2019,15(12):1805474. doi: 10.1002/smll.201805474
    [57]
    YAN Y, ZHANG R, YU Y, et al. Interfacial optimization of PtNi octahedrons@Ti3C2 MXene with enhanced alkaline hydrogen evolution activity and stability[J]. Applied Catalysis B: Environmental,2021,291:120100. doi: 10.1016/j.apcatb.2021.120100
    [58]
    DU C F, SUN X, YU H, et al. Synergy of Nb doping and surface alloy enhanced on water-alkali electrocatalytic hydrogen generation performance in Ti-based mxene[J]. Advanced Science,2019,6(11):1900116.
    [59]
    ATTANAYAKE N H, ABEYWEERA S C, THENUWARA A C, et al. Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst[J]. Journal of Materials Chemistry A,2018,6(35):16882-16889. doi: 10.1039/C8TA05033C
    [60]
    LIANG J, DING C, LIU J, et al. Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media[J]. Nanoscale,2019,11(22):10992-11000. doi: 10.1039/C9NR02085C
    [61]
    LI N, ZHANG Y, JIA M, et al. 1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting[J]. Electrochimica Acta,2019,326:134976. doi: 10.1016/j.electacta.2019.134976
    [62]
    ZHANG J, ZHAO Y, GUO X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis,2018,1(12):985-992. doi: 10.1038/s41929-018-0195-1
    [63]
    WANG H, LIN Y, LIU S, et al. Confined growth of pyridinic N–Mo2C sites on MXenes for hydrogen evolution[J]. Journal of materials chemistry A,2020,8(15):7109-7116. doi: 10.1039/D0TA01697G
    [64]
    KUZNETSOV D A, CHEN Z, KUMAR P V, et al. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction[J]. Journal of the American Chemical Society,2019,141(44):17809-17816. doi: 10.1021/jacs.9b08897
    [65]
    WU X, ZHOU S, WANG Z, et al. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater[J]. Advanced Energy Materials,2019,9(34):1901333. doi: 10.1002/aenm.201901333
    [66]
    KULKARNI A, SIAHROSTAMI S, PATEL A, et al. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chemical Reviews,2018,118(5):2302-2312. doi: 10.1021/acs.chemrev.7b00488
    [67]
    NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B,2004,108(46):17886-17892. doi: 10.1021/jp047349j
    [68]
    XUE Q, PEI Z, HUANG Y, et al. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries[J]. Journal of Materials Chemistry A,2017,5(39):20818-20823. doi: 10.1039/C7TA04532H
    [69]
    CHEN J, YUAN X, LYU F, et al. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction[J]. Journal of Materials Chemistry A,2019,7(3):1281-1286. doi: 10.1039/C8TA10574J
    [70]
    YANG X, JIA Q, DUAN F, et al. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: Non-Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution[J]. Applied Surface Science,2019,464:78-87. doi: 10.1016/j.apsusc.2018.09.069
    [71]
    ZUBAIR M, HASSAN M M U, MEHRAN M T, et al. 2D MXenes and their heterostructures for HER, OER and overall water splitting: A review[J]. International Journal of Hydrogen Energy, 2022, 47(5): 2794-2818.
    [72]
    张毓文. Co9S8基材料的合成及其电催化析氧性能研究[D]. 兰州: 兰州大学, 2022.

    ZHANG Yuwen. Synthesis of Co9S8 based materials and their electrocatalytic oxygen evolution performance[D]. Lanzhou: Lanzhou University, 2022(in Chinese).
    [73]
    MA T Y, CAO J L, JARONIEC M, et al. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution[J]. Angewandte Chemie International Edition,2016,55(3):1138-1142. doi: 10.1002/anie.201509758
    [74]
    HU L, LI M, WEI X, et al. Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis[J]. Chemical Engineering Journal,2020,398:125605. doi: 10.1016/j.cej.2020.125605
    [75]
    ZOU H, HE B, KUANG P, et al. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin Mxene nanosheets for electrocatalytic oxygen evolution[J]. ACS Applied Materials & Interfaces,2018,10(26):22311-22319.
    [76]
    ZHU X D, XIE Y, LIU Y T. Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions[J]. Journal of Materials Chemistry A,2018,6(43):21255-21260. doi: 10.1039/C8TA08374F
    [77]
    YUE Q, SUN J, CHEN S, et al. Hierarchical mesoporous MXene–NiCoP electrocatalyst for water-splitting[J]. ACS Applied Materials & Interfaces,2020,12(16):18570-18577.
    [78]
    KAN D, WANG D, ZHANG X, et al. Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb2CT2 MXene by first-principles calculations[J]. Journal of Materials Chemistry A,2020,8(6):3097-3108. doi: 10.1039/C9TA12255A
    [79]
    WHIPPLE D T, KENIS P J. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction[J]. The Journal of Physical Chemistry Letters,2010,1(24):3451-3458. doi: 10.1021/jz1012627
    [80]
    LI X, BAI Y, SHI X, et al. Mesoporous g-C3N4/MXene (Ti3C2Tx) heterojunction as a 2D electronic charge transfer for efficient p-hotocatalytic CO2 reduction[J]. Applied Surface Science,2021,546:149111. doi: 10.1016/j.apsusc.2021.149111
    [81]
    SHEN J, SHEN J, ZHANG W, et al. Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction[J]. Ceramics International,2019,45(18):24146-24153. doi: 10.1016/j.ceramint.2019.08.123
    [82]
    KANNAN K, SLIEM M H, ABDULLAH A M, et al. Fabrication of ZnO-Fe-MXene based nanocomposites for efficient CO2 reduction[J]. Catalysts,2020,10(5):549. doi: 10.3390/catal10050549
    [83]
    KOZUCH S, SHAIK S. Kinetic-quantum chemical model for catalytic cycles: The Haber-Bosch process and the effect of reagent concentration[J]. The Journal of Physical Chemistry A,2008,112(26):6032-6041. doi: 10.1021/jp8004772
    [84]
    GRUBER N, GALLOWAY J N. An earth-system perspective of the global nitrogen cycle[J]. Nature,2008,451(7176):293-296. doi: 10.1038/nature06592
    [85]
    LI T, YAN X, HUANG L, et al. Fluorine-free Ti3C2Tx (T=O, OH) nanosheets (~50-100 nm) for nitrogen fixation under ambient conditions[J]. Journal of Materials Chemistry A,2019,7(24):14462-14465. doi: 10.1039/C9TA03254A
    [86]
    CHENG Y, DAI J, SONG Y, et al. Single molybdenum atom anchored on 2D Ti2NO2 MXene as a promising electrocatalyst for N2 fixation[J]. Nanoscale,2019,11(39):18132-18141. doi: 10.1039/C9NR05402B
    [87]
    PENG W, LUO M, XU X, et al. Spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction[J]. Advanced Energy Materials,2020,10(25):2001364. doi: 10.1002/aenm.202001364
    [88]
    LIU A, GAO M, REN X, et al. A two-dimensional Ru@MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction[J]. Nanoscale,2020,12(20):10933-10938. doi: 10.1039/D0NR00788A
    [89]
    KONG W, GONG F, ZHOU Q, et al. An MnO2-Ti3C2Tx MXene nanohybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions[J]. Journal of Materials Chemistry A,2019,7(32):18823-18827. doi: 10.1039/C9TA04902A
    [90]
    ZHANG J, QU X, HAN Y, et al. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance[J]. Applied Catalysis B: Environmental,2020,263:118345. doi: 10.1016/j.apcatb.2019.118345
    [91]
    CHANDRAN M, RAVEENDRAN A, VINOBA M, et al. Nickel-decorated MoS2/MXenenanosheets composites for electrocatalytic oxidation of methanol[J]. Ceramics International,2021,47(19):26847-26855. doi: 10.1016/j.ceramint.2021.06.093
    [92]
    WANG Y, WANG J, HAN G, et al. Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction[J]. Ceramics International,2019,45(2):2411-2417. doi: 10.1016/j.ceramint.2018.10.160
    [93]
    HE W, WANG F, JIA D, et al. Al-doped nickel sulfide nanosheet arrays as highly efficient bifunctional electrocatalysts for overall water splitting[J]. Nanoscale,2020,12(47):24244-24250. doi: 10.1039/D0NR07134J
    [94]
    WU L, YU L, ZHANG F, et al. Facile synthesis of nanoparticle-stacked tungsten-doped nickel iron layered double hydroxide nanosheets for boosting oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2020, 8(16): 8091-8103.
    [95]
    GUO M, QU Y, ZENG F, et al. Synthetic strategy and evaluation of hierarchical nanoporous NiO/NiCoP microspheres as efficient electrocatalysts for hydrogen evolution reaction[J]. Electrochimica Acta,2018,292:88-97. doi: 10.1016/j.electacta.2018.09.159
    [96]
    YOUN D H, HAN S, KIM J Y, et al. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support[J]. ACS Nano,2014,8(5):5164-5173. doi: 10.1021/nn5012144
    [97]
    GONG Q, WANG Y, HU Q, et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution[J]. Nature Communications,2016,7(1):13216. doi: 10.1038/ncomms13216
    [98]
    LU Y, HUANG K, CAO X, et al. Atomically dispersed intrinsic hollow sites of M-M1-M (M1= Pt, Ir; M= Fe, Co, Ni, Cu, Pt, Ir) on FeCoNiCuPtIr nanocrystals enabling rapid water redox[J]. Advanced Functional Materials,2022,32(19):2110645. doi: 10.1002/adfm.202110645
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (1028) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return