Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WANG Shuo, WU Wenbin, WANG Xin, et al. Basic scientific problems of nickel-rich cathode for lithium-ion battery: Regulation and formation mechanism of radially oriented parties[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5518-5528. doi: 10.13801/j.cnki.fhclxb.20230310.002
Citation: WANG Shuo, WU Wenbin, WANG Xin, et al. Basic scientific problems of nickel-rich cathode for lithium-ion battery: Regulation and formation mechanism of radially oriented parties[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5518-5528. doi: 10.13801/j.cnki.fhclxb.20230310.002

Basic scientific problems of nickel-rich cathode for lithium-ion battery: Regulation and formation mechanism of radially oriented parties

doi: 10.13801/j.cnki.fhclxb.20230310.002
Funds:  National Natural Science Foundation of China (21805018); Sichuan Sience and Tehnology Program (2022ZHCG0018; 2023NSFSC0117; 2023ZHCG0060); Project Funded by China Postdoctoral Science Foundation (2022M722704); Yibin Sience and Tehnology Program (2022JB005)
  • Received Date: 2023-01-30
  • Accepted Date: 2023-03-03
  • Rev Recd Date: 2023-02-28
  • Available Online: 2023-03-10
  • Publish Date: 2023-10-15
  • Secondary particle assembed with radial oriented primary grains can inhibit the formation of microcracks and provide a good Li+ diffusion path, and it is an ideal morphology for high-end polycrystalline Ni-rich cathode materials. In recent years, some researchers have obtained nickel-rich cathode materials assembed with grains with large length-width ratio by regulating precursor precipitation crystallization and high temperature lithium crystallization. However, the regulation method and formation mechanism of the radially oriented structure of Ni-rich cathode, especially the regulation method of the radially oriented hydroxide precursor and the influence of the key parameters on the radially oriented structure, have not been elaborated. In this paper, the necessity of regulating the radially oriented structure of polycrystalline Ni-rich cathode and the mechanism on enhancing electrochemical performance are introduced. Secondly, the regulation method and formation mechanism of the radially oriented polycrystalline Ni-rich cathode are introduced, including the influence of the key parameters of precipitation crystallization process (pH, ammonia concentration and solid content) on the radially oriented precursor, and the influence of temperature and doping elements induced in calcination process on the maintenance of the oriented structure of precursor. Finally, the challenges facing for the regulation of radially oriented Ni-rich cathode are discussed.

     

  • loading
  • [1]
    PARK G T, RYU H H, NOH T C, et al. Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries[J]. Materials Today,2022,52:9-18. doi: 10.1016/j.mattod.2021.11.018
    [2]
    PARK G T, PARK N Y, NOH T C, et al. High-performance Ni-rich LiNi0.9−xCo0.1AlxO2 cathodes via multi-stage microstructural tailoring from hydroxide precursor to the lithiated oxide[J]. Energy & Environmental Science,2021,14(9):5084-5095.
    [3]
    NGUYEN T T, KIM U H, YOON C S, et al. Enhanced cycling stability of Sn-doped LiNi0.9Co0.05Mn0.05O2 via optimization of particle shape and orientation[J]. Chemical Engineering Journal, 2021, 405: 126887.
    [4]
    曹梦圆, 王明星, 邓中莉, 等. 锂离子电池富镍正极基础科学问题: 晶粒形态及组装方式调控[J]. 复合材料学报, 2023, 40(5):2525-2535.

    CAO Mengyuan, WANG Mingxing, DENG Zhongli, et al. Basic scientific problems of nickel-rich cathode for lithium-ion battery: Morphology and accumulation regulation of primary particles[J]. Acta Materiae Compositae Sinica,2023,40(5):2525-2535(in Chinese).
    [5]
    XIAO P H, SHI T, HUANG W X, et al. Understanding surface densified phases in Ni-rich layered compounds[J]. ACS Energy Letters,2019,4(4):811-818. doi: 10.1021/acsenergylett.9b00122
    [6]
    LI J Y, MANTHIRAM A. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries[J]. Advanced Energy Materials,2019,9(45):1902731. doi: 10.1002/aenm.201902731
    [7]
    PARK K J, HWANG J Y, RYU H H, et al. Degradation mechanism of Ni-enriched NCA cathode for lithium batteries: Are microcracks really critical?[J]. ACS Energy Letters,2019,4(6):1394-1400. doi: 10.1021/acsenergylett.9b00733
    [8]
    NAM G W, PARK N Y, PARK K J, et al. Capacity fading of Ni-rich NCA cathodes: Effect of microcracking extent[J]. ACS Energy Letters, 2019, 4: 2995-3001.
    [9]
    RYU H H, PARK N Y, SEO J H, et al. A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries[J]. Materials Today, 2020, 36: 73-82.
    [10]
    JUNG S H, KIM U H, KIM J H, et al. Ni-rich layered cathode materials with electrochemo-mechanically compliant microstructures for all-solid-state Li batteries[J]. Advanced Energy Materials,2020,10(6):1903360. doi: 10.1002/aenm.201903360
    [11]
    KIM U H, RYU H H, KIM J H, et al. Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles[J]. Advanced Energy Materials,2019,9(15):1803902. doi: 10.1002/aenm.201803902
    [12]
    NOH H J, CHEN Z H, YOON C S, et al. Cathode material with nanorod structure—An application for advanced high-energy and safe lithium batteries[J]. Chemistry of Materials,2013,25(10):2109-2115. doi: 10.1021/cm4006772
    [13]
    YOON C S, KIM S J, KIM U H, et al. Microstructure evolution of concentration gradient LiNi0.75Co0.1Mn0.15O2 cathode for lithium-ion batteries[J]. Advanced Functional Materials,2018,28(28):1802090. doi: 10.1002/adfm.201802090
    [14]
    PARK K J, JUNG H G, KUO L Y, et al. Improved cycling stability of LiNi0.9Co0.05Mn0.05O2 through microstructure modification by boron doping for Li-ion batteries[J]. Advanced Energy Materials,2018,8(25):1801202. doi: 10.1002/aenm.201801202
    [15]
    XU X, HUO H, JIAN J Y, et al. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Advanced Energy Materials,2019,9(15):1803963. doi: 10.1002/aenm.201803963
    [16]
    PARK G T, YOON D R, KIM U H, et al. Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries[J]. Energy & Environmental Science, 2021, 14: 6616-6626.
    [17]
    KIM U H, PARK J H, AISHOVA A, et al. Microstructure engineered Ni-rich layered cathode for electric vehicle batteries[J]. Advanced Energy Materials,2021,11(25):2100884. doi: 10.1002/aenm.202100884
    [18]
    HUA W B, LIU W Y, CHEN M Z, et al. Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials[J]. Electrochimica Acta, 2017, 232: 123-131.
    [19]
    王鑫, 任莉, 王硕, 等. 锂离子电池富镍正极基础科学问题: 氢氧化物前驱体结晶调控及机制[J]. 复合材料学报, 2022, 39(5):1995-2013.

    WANG Xin, REN Li, WANG Shuo, et al. Basic scientific problems of nickel rich cathode materials for Li-ion battery: Regulation and mechanism for crystallization of hydroxide precursor[J]. Acta Materiae Compositae Sinica,2022,39(5):1995-2013(in Chinese).
    [20]
    YANG Y, XU S M, XIE M, et al. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2[J]. Journal of Alloys and Compounds, 2015, 619: 846-853.
    [21]
    CHEN X L, LI D, MO Y, et al. Cathode materials with cross-stack structures for suppressing intergranular cracking and high-performance lithium-ion batteries[J]. Electrochimica Acta, 2018, 261: 513-520.
    [22]
    王碧武, 黄晓笑, 于建, 等. 一种高镍前驱体材料、其制备方法及应用: 中国, 202110565272.6[P]. 2022-11-15.

    WANG Biwu, HUANG Xiaoxiao, YU Jian, et al. A precursor material for high nickel cathode and its preparation method and application: CN, 202110565272.6[P]. 2022-11-15(in Chinese).
    [23]
    熊俊, 卞益鹏, 高文政, 等. 一种三元前驱体晶须形貌的控制方法: 中国, 202210726493.1[P]. 2022-09-20.

    XIONG Jun, BIAN Yipeng, GAO Wenzheng, et al. A method for controlling the whisker morphology of precursor material for ternary cathode: CN, 202210726493.1[P]. 2022-09-20(in Chinese).
    [24]
    訚硕, 王乐, 张雨英, 等. 三元正极材料前驱体及制备方法、正极材料、正极浆料、锂离子电池及正极和涉电设备: 中国, 202111623510.0[P]. 2023-01-24.

    YAN Shuo, WANG Le, ZHANG Yuying, et al. A precursor material for ternary cathode and its preparation method, cathode, cathode paste, lithium ion battery and electric-related equipment: CN, 202111623510.0[P]. 2023-01-24(in Chinese).
    [25]
    余春林, 陈旭东. 球形高镍三元前驱体材料、其制备方法与高镍三元正极材料: 中国, 202110948253.1[P]. 2021-11-16.

    YU Chunlin, CHEN Xudong. A spherical precursor material for high nickel ternary cathode and its preparation method and corresponding high nickel ternary cathode: CN, 202110948253.1[P]. 2021-11-16(in Chinese).
    [26]
    余春林, 陈旭东. 高镍三元前驱体材料、其制备方法与高镍三元正极材料: 中国, 202110949247.8[P]. 2021-11-16.

    YU Chunlin, CHEN Xudong. A high-nickel ternary precursor material, its preparation method and high-nickel ternary positive electrode material: CN, 202110949247.8[P]. 2021-11-16(in Chinese).
    [27]
    YOON S J, MYUNG S T, NOH H J, et al. Nanorod and nanoparticle shells in concentration gradient core-shell lithium oxides for rechargeable lithium batteries[J]. ChemSusChem,2014,7(12):3295-3303. doi: 10.1002/cssc.201402389
    [28]
    KIM U H, KIM J H, HWANG J Y, et al. Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries[J]. Materials Today, 2018, 23: 26-36.
    [29]
    KIM U H, PARK G T, SON B K, et al. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge[J]. Nature Energy, 2021, 5: 860-869.
    [30]
    YANG W, LI H D, WANG D, et al. Ta induced fine tuning of microstructure and interface enabling Ni-rich cathode with unexpected cyclability in pouch-type full cell[J]. Nano Energy,2022,104:107880. doi: 10.1016/j.nanoen.2022.107880
    [31]
    SUN H H, KIM U H, PARK J H, et al. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries[J]. Nature Communications,2021,12(1):6552. doi: 10.1038/s41467-021-26815-6
    [32]
    KIM U H, PARK N Y, PARK G T, et al. High-energy W-doped LiNi0.95Co0.04Al0.01O2 cathodes for next-generation electric vehicles[J]. Energy Storage Materials, 2020, 33: 399-407.
    [33]
    PARK N Y, RYU H H, KUO L Y, et al. High-energy cathodes via precision microstructure tailoring for next-generation electric vehicles[J]. ACS Energy Letters,2021,6(12):4195-4202. doi: 10.1021/acsenergylett.1c02281
    [34]
    ZHU C Q, CAO M Y, ZHANG H Y, et al. Synergistic effect of microstructure engineering and local crystal structure tuning to improve the cycling stability of Ni-rich cathodes[J]. ACS Applied Materials & Interfaces,2021,13(41):48720-48729.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (1014) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return