Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
YANG Laixia, LIU Bo, LIU Tengfei, et al. Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5654-5665. doi: 10.13801/j.cnki.fhclxb.20230213.003
Citation: YANG Laixia, LIU Bo, LIU Tengfei, et al. Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5654-5665. doi: 10.13801/j.cnki.fhclxb.20230213.003

Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments

doi: 10.13801/j.cnki.fhclxb.20230213.003
Funds:  Foundation Strengthening Project (2017-JCJQ-ZD-035); National Natural Science Foundation of China (52205413); China Postdoctoral Science Foundation (2022M712534)
  • Received Date: 2022-10-28
  • Accepted Date: 2023-01-22
  • Rev Recd Date: 2022-12-27
  • Available Online: 2023-02-14
  • Publish Date: 2023-10-15
  • To reduce the porosity of 3D printing continuous fiber reinforced polymer (CFRP) composites and improve the degree of resin impregnation on fibers, it is of great necessity to conduct research on the preparation and 3D printing performance of melt-impregnated continuous fiber prepreg filaments, as well as develop integrated fiber prepreg equipment. With glass fiber (GF) and carbon fiber (CF) as reinforcement, and polycarbonate (PC) as matrix, this study aims to develop a melt-impregnated prepreg wire preparation process and study the influence of the impregnation process on prepreg wire properties. Besides, using prepreg yarn as the raw material, this study is aimed at studying the effect of 3D printing forming process parameters on the fiber content, porosity and mechanical properties as well. The results indicate that when the tensile strength of continuous glass fiber reinforced polycarbonate (CGF/PC) prepreg filament is 627.8 MPa, the printing temperature is 260℃, the layering thickness is 0.10 mm, the scan spacing is 1.0 mm, the fiber content of continuous carbon fiber reinforced polycarbonate (CCF/PC) composite is 28.66vol%, the tensile strength and modulus are respectively 644.8 MPa and 85.6 GPa, and the optimized porosity is 3.87%. When the printing temperature is 280℃, the layering thickness is 0.14 mm, and the scan spacing is 1.2 mm, the fiber content of continuous glass fiber reinforced polycarbonate (CGF/PC) composite turn out to be 51.35vol%, the tensile strength and modulus are respectively 381.4 MPa and 23.6 GPa, and the optimized porosity is 4.41%.

     

  • loading
  • [1]
    秦若森, 孙守政, 韩振宇, 等. 3D打印连续纤维增强热塑性复合材料成形质量的研究进展[J]. 材料导报, 2022, 36(17):200-208.

    TAI Ruosen, SUN Shouzheng, HAN Zhenyu, et al. 3D printing for continuous fiber-reinforced thermoplastic composites: A review on molding quality[J]. Materials Reports,2022,36(17):200-208(in Chinese).
    [2]
    陈向明, 姚辽军, 果立成, 等. 3D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10):174-198.

    CHEN Xiangming, YAO Liaojun, GUO Licheng, et al. 3D printed continuous fiber-reinforced composites: State of the art and perspectives[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):174-198(in Chinese).
    [3]
    YASSIN K, HOJJATI M. Processing of thermoplastic matrix composites through automated fiber placement and tape laying methods: A review[J]. Journal of Thermoplastic Composite Materials, 2018, 31(12): 1676-1725.
    [4]
    QURESHI Z, SWAIT T, SCAIFE R, et al. In situ consolidation of thermoplastic prepreg tape using automated tape placement technology: Potential and possibilities[J]. Composites Part B: Engineering,2014,66:255-267. doi: 10.1016/j.compositesb.2014.05.025
    [5]
    SUN Z, XIAO J, YU X, et al. Vibration characteristics of carbon-fiber reinforced composite drive shafts fabricated using filament winding technology[J]. Composite Structures,2019,241:111725.
    [6]
    MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:23058. doi: 10.1038/srep23058
    [7]
    FIJUL KABIR S M, MATHUR K, SEYAM A F M. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties[J]. Composite Structures,2020,232:111476.
    [8]
    刘玲, 路明坤, 张博明, 等. 孔隙率对碳纤维复合材料超声衰减系数和力学性能的影响[J]. 复合材料学报, 2004, 21(5):116-121. doi: 10.3321/j.issn:1000-3851.2004.05.022

    LIU Ling, LU Mingkun, ZHANG Boming, et al. Effects of porosity on the ultrasonic absorption coefficient and mechanical strength of carbon/epoxy composites[J]. Acta Materiae Compositae Sinica,2004,21(5):116-121(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.05.022
    [9]
    VAJARI D A, GONZALEZ C, LLORCA J, et al. A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites[J]. Composites Science and Technology,2014,97(16):46-54.
    [10]
    TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032
    [11]
    刘良强, 肖学良, 董科, 等. 3D打印连续芳纶纤维/聚乳酸波纹夹层结构复合材料的压缩性能研究[J]. 塑料工业, 2020, 48(1):91-95. doi: 10.3969/j.issn.1005-5770.2020.01.020

    LIU Liangqiang, XIAO Xueliang, DONG Ke, et al. Compression properties of 3D printed continuous Kevlar fiber/PLA corrugated sandwich composite[J]. China Plastics Industry,2020,48(1):91-95(in Chinese). doi: 10.3969/j.issn.1005-5770.2020.01.020
    [12]
    明越科, 段玉岗, 王奔, 等. 高性能纤维增强树脂基复合材料3D打印[J]. 航空制造技术, 2019, 62(4):34-38, 46.

    MING Yueke, DUAN Yugang, WANG Ben, et al. 3D printing for high performance fiber reinforced polymer composites[J]. Aeronautical Manufacturing Technology,2019,62(4):34-38, 46(in Chinese).
    [13]
    UEDA M, KISHIMOTO S, YAMAWAKI M, et al. 3D compaction printing of a continuous carbon fiber reinforced thermoplastic[J]. Composites Part A: Applied Science and Manufacturing,2020,137:105985. doi: 10.1016/j.compositesa.2020.105985
    [14]
    徐奔, 张守玉, 水锋, 等. 连续碳纤维增强聚苯硫醚复合材料的3D打印及力学性能优化[J]. 高分子材料科学与工程, 2022, 38(7):84-92.

    XU Ben, ZHANG Shouyu, SHUI Feng, et al. 3D printing and mechanical properties optimization of continuous carbon fiber reinforced polyphenylene sulfide composites[J]. Polymer Materials Science and Engineering,2022,38(7):84-92(in Chinese).
    [15]
    李慧斌. 3D打印连续碳纤维丝材制备工艺及性能分析[D]. 大连: 大连理工大学, 2021.

    LI Huibin. Preparation technology and performance analysis of 3D printing continuous carbon fiber wire[D]. Dalian: Dalian University of Technology, 2021(in Chinese).
    [16]
    JAHANGIR M N, BILLAH K M M, LIN Y, et al. Reinforcement of material extrusion 3D printed polycarbonate using continuous carbon fiber[J]. Additive Manufacturing, 2019, 28: 354-364.
    [17]
    李涤尘, 鲁中良, 田小永, 等. 增材制造−面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4):22-38, 3.

    LI Dichen, LU Zhongliang, TIAN Xiaoyong, et al. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):22-38, 3(in Chinese).
    [18]
    程平, 彭勇, 汪馗, 等. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 237-242.

    CHENG Ping, PENG Yong, WANG Kui, et al. Quasi static penetration property of 3D printed continuous ramie-fiber reinforced polylactic acid composites[J]. Materials Reports, 2023, 37(1): 237-242(in Chinese).
    [19]
    USUN A, GUMRUK R. The mechanical performance of the 3D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation[J]. Additive Manufacturing,2021,46:102112. doi: 10.1016/j.addma.2021.102112
    [20]
    许云鹏, 颜春, 刘东, 等. 连续纤维增强热塑性预浸料制备工艺的研究进展[J]. 复合材料科学与工程, 2020(8): 123-128.

    XU Yunpeng, YAN Chun, LIU Dong, et al. Rrogress in preparation technology of continuous fiber reinforced thermoplastic prepregs[J]. Composites Science and Engineering, 2020(8): 123-128(in Chinese).
    [21]
    刘国强. 聚合物光纤光栅传感特性研究[D]. 北京: 北京邮电大学, 2017.

    LIU Guoqiang. Research on sensing properties of polymer optical fiber grating[D]. Beijing: Beijing University of Posts and Telecommunications, 2017(in Chinese).
    [22]
    李杰. 抗氧剂、光稳定剂在聚碳酸酯和改性材料中的应用技术[J]. 塑料助剂, 2021(1):1-6.

    LI Jie. Application of antioxidants and light stabilizers in polycarbonate and modified materials[J]. Plastics Additives,2021(1):1-6(in Chinese).
    [23]
    王欢. 聚碳酸酯的需求与市场分析[J]. 云南化工, 2021, 48(5): 9-11.

    WANG Huan. Demand and market analysis of polycarbonate[J]. Yunnan Chemical Industry, 2021, 48(5): 9-11(in Chinese).
    [24]
    田小永, 张亚园, 刘腾飞, 等. 连续碳纤维增强尼龙复合材料预浸丝制备与3D打印性能研究[J]. 航空制造技术, 2021, 64(15):24-33.

    TIAN Xiaoyong, ZHANG Yayuan, LIU Tengfei, et al. Prepreg preparation and 3D printing of continuous carbon fiber reinforced nylon composite[J]. Aerospace Manufacturing Technology,2021,64(15):24-33(in Chinese).
    [25]
    中国国家标准化管理委员会. 碳纤维复丝拉伸性能试验方法: GB/T 3362—2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People's Republic of China. Test methods for tensile properties of carbon fiber multifilament: GB/T 3362—2017[S]. Beijing: China Standards Press, 2017.
    [26]
    中国国家标准化管理委员会. 定向维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014

    Standardization Administration of the People's Republic of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/T 3354—2014[S]. Beijing: China Standards Press, 2014.
    [27]
    LI H, LIU B, GE L, et al. Mechanical performances of continuous carbon fiber reinforced PLA composites printed in vacuum[J]. Composites Part B: Engineering,2021,225:109277. doi: 10.1016/j.compositesb.2021.109277
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(9)

    Article Metrics

    Article views (759) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return