Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LUO Yi, LIAO Hai, ZHAO Zhidong, et al. Design of flexible nano pressure sensor based on BiCl3/P(VDF-TrFE) composite film and application in force sensing flexible keyboard[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5750-5759. doi: 10.13801/j.cnki.fhclxb.20230117.006
Citation: LUO Yi, LIAO Hai, ZHAO Zhidong, et al. Design of flexible nano pressure sensor based on BiCl3/P(VDF-TrFE) composite film and application in force sensing flexible keyboard[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5750-5759. doi: 10.13801/j.cnki.fhclxb.20230117.006

Design of flexible nano pressure sensor based on BiCl3/P(VDF-TrFE) composite film and application in force sensing flexible keyboard

doi: 10.13801/j.cnki.fhclxb.20230117.006
  • Received Date: 2022-10-27
  • Accepted Date: 2023-01-09
  • Rev Recd Date: 2022-12-19
  • Available Online: 2023-01-18
  • Publish Date: 2023-10-15
  • The organic piezoelectric sensor prepared by electrospinning is better flexibility, light weight and breathability than the traditional pressure sensor, which has attracted much attention in the field of wearable sensor research. In this paper, a method of preparing BiCl3/poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) composite film by electrospinning was proposed, and the flexible piezoelectric sensor was designed and prepared with the composite film as the functional layer. After a certain amount of BiCl3 is added, the scanning electron microscope analysis shows that the average diameter of the fiber increases from 619 nm to 1158 nm, and the surface becomes smoother. The X-ray diffraction pattern confirms that β phase content of the composite film has been significantly improved. The piezoelectric response testing results show that the open circuit peak-to-peak voltage (Voc) and short-circuit current (Isc) of P(VDF-TrFE) composite films with 2wt%BiCl3 are 16.8 V and 164 nA. Compared with pure P(VDF-TrFE) piezoelectric film, it is obviously improved 2.15 and 2.24 times. The pressure sensing testing results show that the piezoelectric film is good linear output characteristics under the pressure of 1.28 N. A flexible wearable force sensing keyboard was designed with this film, which could collect fingers pressing force and duration time. And it provides a reference solution on smart fabrics such as flexible keyboard applications.

     

  • loading
  • [1]
    HUANG L T, ZENG R J, XU J H, et al. Point-of-care immunoassay based on a multipixel dual-channel pressure sensor array with visual sensing capability of full-color switching and reliable electrical signals[J]. Analytical Chemistry,2022,94(38):13278-13286. doi: 10.1021/acs.analchem.2c03393
    [2]
    ZENG R J, LUO Z B, ZHANG L J, et al. Platinum nanozyme-catalyzed gas generation for pressure-based bioassay using polyaniline nanowires-functionalized graphene oxide framework[J]. Analytical Chemistry,2018,90(20):12299-12306. doi: 10.1021/acs.analchem.8b03889
    [3]
    YU Z Z, TANG Y, CAI G N, et al. Paper electrode-based flexible pressure sensor for point-of-care immunoassay with digital multimeter[J]. Analytical Chemistry,2019,91(2):1222-1226. doi: 10.1021/acs.analchem.8b04635
    [4]
    LIU F, HASHIM N A, LIU Y T, et al. Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science,2011,375(1-2):1-27. doi: 10.1016/j.memsci.2011.03.014
    [5]
    SONG Y S, YUN Y, LEE D Y, et al. Effect of PVDF concentration and number of fiber lines on piezoelectric properties of polymeric PVDF biosensors[J]. Fibers and Polymers,2021,22(5):1200-1207. doi: 10.1007/s12221-021-0509-9
    [6]
    LU L J, DING W Q, LIU J Q, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy,2020,78:105251. doi: 10.1016/j.nanoen.2020.105251
    [7]
    WANKHADE S H, TIWARI S, GAUR A, et al. PVDF-PZT nanohybrid based nanogenerator for energy harvesting applications[J]. Energy Reports,2020,6:358-364. doi: 10.1016/j.egyr.2020.02.003
    [8]
    WANG S W, ZHANG L, WANG L L, et al. Fluorinated barium titanate nanoparticles for wearable piezoelectric power generation[J]. ACS Applied Nano Materials,2022,5(3):3352-3360. doi: 10.1021/acsanm.1c03777
    [9]
    SU Y P, SIM L N, COSTER H G L, et al. Incorporation of barium titanate nanoparticles in piezoelectric PVDF membrane[J]. Journal of Membrane Science,2021,640:119861. doi: 10.1016/j.memsci.2021.119861
    [10]
    ZHOU W Y, ZHANG F, YUAN M X, et al. Improved dielectric properties and thermal conductivity of PVDF composites filled with core-shell structured Cu@CuO particles[J]. Journal of Materials Science: Materials in Electronics,2019,30:18350-18361. doi: 10.1007/s10854-019-02189-w
    [11]
    YANG T, PAN H, TIAN G, et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics[J]. Nano Energy,2020,72:104706. doi: 10.1016/j.nanoen.2020.104706
    [12]
    LI J Y, ZHANG L, DUCHARME S. Electric energy density of dielectric nanocomposites[J]. Applied Physics Letters,2007,90(13):132901. doi: 10.1063/1.2716847
    [13]
    ZHANG X, ZHAO S, WANG F, et al. Improving dielectric properties of BaTiO3/poly(vinylidene fluoride) composites by employing core-shell structured BaTiO3@poly(methylmethacrylate) and BaTiO3@poly(trifluoroethyl methacrylate) nanoparticles[J]. Applied Surface Science,2017,403:71-79. doi: 10.1016/j.apsusc.2017.01.121
    [14]
    MOKHTARI F, LATIFI M, SHAMSHIRSAZ M, et al. Modeling of electrospun PVDF/LiCl nanogenerator by the energy approach method: Determining piezoelectric constant[J]. The Journal of the Textile Institute,2017,108(11):1917-1925. doi: 10.1080/00405000.2017.1300219
    [15]
    WANG A D, LIU J H, SHAO C K, et al. Electro-assisted 3D printing multi-layer PVDF/CaCl2 composite films and sensors[J]. Coatings,2022,12(6):820. doi: 10.3390/coatings12060820
    [16]
    ELASHMAWI I S. Effect of LiCl filler on the structure and morphology of PVDF films[J]. Materials Chemistry and Physics,2008,107(1):96-100. doi: 10.1016/j.matchemphys.2007.06.045
    [17]
    WANG Y J, WANG F F, XU L J. Effect of BiCl3 on the morphology and property of PVDF films[J]. Advanced Materials Research,2013,804:74-78. doi: 10.4028/www.scientific.net/AMR.804.74
    [18]
    FONTANANOVA E, JANSEN J C, CRISTIANO A, et al. Effect of additives in the casting solution on the formation of PVDF membranes[J]. Desalination,2006,192(1-3):190-197. doi: 10.1016/j.desal.2005.09.021
    [19]
    MISHRA S, SAHOO R, UNNIKRISHNAN L, et al. Investigation of the electroactive phase content and dielectric behaviour of mechanically stretched PVDF-GO and PVDF-rGO composites[J]. Materials Research Bulletin,2020,124:110732. doi: 10.1016/j.materresbull.2019.110732
    [20]
    WEN R Y, GAO Z H, LUO L, et al. Sandwich-structured electrospun all-fluoropolymer membranes with thermal shut-down function and enhanced electrochemical performance[J]. Nanocomposites,2022,8(1):64-73. doi: 10.1080/20550324.2022.2057661
    [21]
    NOORINEZHAD E, MERATI A A, MOAZENI N. Enhancement of chromic-piezoelectric sensitivity responses of polyvinylidene fluoride/polydiacetylene nanofibers using graphene oxide[J]. Journal of Polymer Research,2021,28(12):456. doi: 10.1007/s10965-021-02641-8
    [22]
    KHALIFA M, PERAVALI S, VARSHA S, et al. Piezoelectric energy harvesting using flexible self-poled electroactive nanofabrics based on PVDF/ZnO-decorated SWCNT nanocomposites[J]. JOM,2022,74(8):3162-3171. doi: 10.1007/s11837-022-05342-9
    [23]
    ROBB B, LENNOX B. Electrospinning for tissue regeneration[M]. Manchester: Woodhead Publishing Series in Biomaterials, 2011: 51-66.
    [24]
    JOAQUIM A, PAUL O, IBEZIM M, et al. Electrospray deposition of polyvinylidene fluoride (PVDF) microparticles: Impact of solvents and flow rate[J]. Polymers,2022,14(13):2702. doi: 10.3390/polym14132702
    [25]
    HE Z C, RAULT F, LEWANDOWSKI M, et al. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement[J]. Polymers,2021,13(2):174. doi: 10.3390/polym13020174
    [26]
    YU B, MAO M Y, YU H, et al. Enhanced piezoelectric performance of electrospun polyvinylidene fluoride doped with inorganic salts[J]. Macromolecular Materials and Engineering,2017,302(11):1700214. doi: 10.1002/mame.201700214
    [27]
    MARTINS P, LOPES A C, LANCEROS-MENDEZ S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications[J]. Progress in Polymer Science,2014,39(4):683-706.
    [28]
    SHAHZAD A, CHEN Z F, HAIDARY A A, et al. Piezoelectric pressure sensors based on GO-modified P(VDF-TrFE) fibers for vacuum applications[J]. Journal of Materials Science: Materials in Electronics,2020,31(21):18627-18639. doi: 10.1007/s10854-020-04405-4
    [29]
    SEAMAN R L, CHEN J. Sensing platform for acoustic startle responses from rat forelimbs and hindlimbs[J]. IEEE Transactions on Biomedical Engineering,1996,43(2):221-225.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (474) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return