Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WEI Shuai, LI Zhaoxia, MENG Shujuan, et al. Preparation of Fe2O3/nitrogen-doped biomass carbon composites and their application in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5736-5749. doi: 10.13801/j.cnki.fhclxb.20230117.001
Citation: WEI Shuai, LI Zhaoxia, MENG Shujuan, et al. Preparation of Fe2O3/nitrogen-doped biomass carbon composites and their application in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5736-5749. doi: 10.13801/j.cnki.fhclxb.20230117.001

Preparation of Fe2O3/nitrogen-doped biomass carbon composites and their application in supercapacitors

doi: 10.13801/j.cnki.fhclxb.20230117.001
Funds:  National Natural Science Foundation of China (21968032; 22165025); Provincial Science and Technology Project (20YF8FA045); Basic Research Funds for Central Universities (31920220044); Chemistry Innovation Team Building Project (1110130139; 1110130141); Provincial First-class Professional Construction (2019SJYLZY-08); Provincial College Innovation and Entrepreneurship Project (2021SJCXCYXM-01; 2021SJCXCYTD-01); Outstanding Graduate Student "Innovation Star" Project (2022CXZX-200)
  • Received Date: 2022-10-25
  • Accepted Date: 2023-01-08
  • Rev Recd Date: 2022-12-26
  • Available Online: 2023-01-18
  • Publish Date: 2023-10-15
  • The development of renewable, low-cost and environmentally friendly electrode materials with fast ion/electron transfer rate and adjustable surface chemistry is an urgent need for the development of current energy storage devices. In recent years, biomass carbon materials have attracted much attention because of their low cost, renewable and good cycling performance, but their low specific capacitance and energy density affect their practical applications. Here, the biomass waste was transformed into carbon materials with good chemical properties, and the transition metal oxide Fe2O3 was composite by heteroatom-doped biomass carbon materials, taking advantage of the complementary strengths of Fe2O3 and nitrogen doped carbon was used to prepare Fe2O3/nitrogen-doped biomass carbon (NBCs) composite materials by one-step carbonization, showing excellent electrochemical performance. The results show that the specific capacitance of Fe2O3/NBCs as the negative electrode material is 575 F·g−1 at a current density of 1 A·g−1. At the same time, Fe2O3/NBCs-700℃ and NiCoFe-P were used as cathode and cathode materials respectively to assemble asymmetric supercapacitors, achieves an energy density of 33.3 W·h·kg−1 at a power density of 800 W·kg−1. The assembled asymmetric supercapacitors also exhibit excellent cycling stability, maintaining 82.4% capacitance after 3500 cycles. Therefore, Fe2O3/NBCs is a promising electrode material for supercapacitors as negative electrode materials.

     

  • loading
  • [1]
    WANG Y, DU Z, XIAO J, et al. Polypyrrole-encapsulated Fe2O3 nanotube arrays on a carbon cloth support: Achieving synergistic effect for enhanced supercapacitor performance[J]. Electrochimica Acta,2021,386:138486. doi: 10.1016/j.electacta.2021.138486
    [2]
    ZHU L, LAI S, ZHU J, et al. A facile and environmentally friendly method for preparing supercapacitor electrode carbon-based materials with ultra-long cycling stability[J]. Materials Today Communications,2022,31:103717. doi: 10.1016/j.mtcomm.2022.103717
    [3]
    WANG Y, WANG D, LI Z, et al. Preparation of boron/sulfur-codoped porous carbon derived from biological wastes and its application in a supercapacitor[J]. Nanomaterials,2022,12(7):1182. doi: 10.3390/nano12071182
    [4]
    ZHU S, DONG X, HUANG H, et al. Rich nitrogen-doped carbon on carbon nanotubes for high-performance sodium-ion supercapacitors[J]. Journal of Power Sources,2020,459:228104. doi: 10.1016/j.jpowsour.2020.228104
    [5]
    GANGULY A, KARAKASSIDES A, BENSON J, et al. Multifunctional structural supercapacitor based on urea-activated graphene nanoflakes directly grown on carbon fiber electrodes[J]. ACS Applied Energy Materials,2020,3(5):4245-4254. doi: 10.1021/acsaem.9b02469
    [6]
    MA C, WU L, DIRICAN M, et al. Carbon black-based porous sub-micron carbon fibers for flexible supercapacitors[J]. Applied Surface Science,2021,537:147914. doi: 10.1016/j.apsusc.2020.147914
    [7]
    NIE G, LUAN Y, KOU Z, et al. Fiber-in-tube and particle-in-tube hierarchical nanostructures enable high energy density of MnO2-based asymmetric supercapacitors[J]. Journal of Colloid and Interface Science,2021,582:543-551. doi: 10.1016/j.jcis.2020.08.066
    [8]
    LI S, FAN Z. Nitrogen-doped carbon mesh from pyrolysis of cotton in ammonia as binder-free electrodes of supercapacitors[J]. Microporous and Mesoporous Materials,2019,274:313-317. doi: 10.1016/j.micromeso.2018.09.002
    [9]
    JIANG L, HAN S O, PIRIE M, et al. Seaweed biomass waste-derived carbon as an electrode material for supercapacitor[J]. Energy & Environment,2021,32(6):1117-1129.
    [10]
    QIN L, HOU Z, ZHANG S, et al. Supercapacitive charge storage properties of porous carbons derived from pine nut shells[J]. Journal of Electroanalytical Chemistry,2020,866:114140. doi: 10.1016/j.jelechem.2020.114140
    [11]
    LIU L, FENG R, PAN Y, et al. Nanoporous carbons derived from poplar catkins for high performance supercapacitors with a redox active electrolyte of p-phenylenediamine[J]. Journal of Alloys and Compounds,2018,748:473-480. doi: 10.1016/j.jallcom.2018.03.073
    [12]
    HAO J, WANG J, QIN S, et al. B/N co-doped carbon nanosphere frameworks as high-performance electrodes for supercapacitors[J]. Journal of Materials Chemistry A,2018,6(17):8053-8058. doi: 10.1039/C8TA00683K
    [13]
    LIU Q, LI H, CUI X, et al. Controlled fabrication of nitrogen-doped carbon hollow nanospheres for high-performance supercapacitors[J]. Reactive and Functional Polymers,2019,144:104349.
    [14]
    ZHANG W, XU J, HOU D, et al. Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications[J]. Journal of Colloid and Interface Science,2018,530:338-344. doi: 10.1016/j.jcis.2018.06.076
    [15]
    GUAN L, PAN L, PENG T, et al. Synthesis of biomass-derived nitrogen-doped porous carbon nanosheests for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(9):8405-8412.
    [16]
    ZHAO Y, XU Y, ZENG J, et al. Low-crystalline mesoporous CoFe2O4/C composite with oxygen vacancies for high energy density asymmetric supercapacitors[J]. RSC Advances,2017,7(87):55513-55522. doi: 10.1039/C7RA11741H
    [17]
    ZHU M, KAN J, PAN J, et al. One-pot hydrothermal fabrication of α-Fe2O3@C nanocomposites for electrochemical energy storage[J]. Journal of Energy Chemistry,2019,28:1-8. doi: 10.1016/j.jechem.2017.09.021
    [18]
    HE X, CHEN Q, MAO X, et al. Pseudocapacitance electrode and asymmetric supercapacitor based on biomass juglone/activated carbon composites[J]. RSC Advances,2019,9(53):30809-30814. doi: 10.1039/C9RA05858C
    [19]
    CHUNG M Y, LO C T. High-performance binder-free RuO2/electrospun carbon fiber for supercapacitor electrodes[J]. Electrochimica Acta,2020,364:137324. doi: 10.1016/j.electacta.2020.137324
    [20]
    CHEN Q, CHEN J, ZHOU Y, et al. Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon[J]. Applied Surface Science,2018,440:1027-1036. doi: 10.1016/j.apsusc.2018.01.224
    [21]
    ZHAO J, TIAN Y, LIU A, et al. The NiO electrode materials in electrochemical capacitor: A review[J]. Materials Science in Semiconductor Processing,2019,96:78-90. doi: 10.1016/j.mssp.2019.02.024
    [22]
    HU X, WEI L, CHEN R, et al. Reviews and prospectives of Co3O4-based nanomaterials for supercapacitor application[J]. ChemistrySelect,2020,5(17):5268-5288. doi: 10.1002/slct.201904485
    [23]
    LI J F, CHEN D, WU Q S. α-Fe2O3 based carbon composite as pure negative electrode for application as supercapacitor[J]. European Journal of Inorganic Chemistry,2019,2019(10):1301-1312. doi: 10.1002/ejic.201900015
    [24]
    GUAN Y, JI P, WAN J, et al. Ag-modified Fe2O3 nanoparticles on a carbon cloth as an anode material for high-performance supercapacitors[J]. Nanotechnology,2020,31(12):125405. doi: 10.1088/1361-6528/ab5a29
    [25]
    MAZLOUM-ARDAKANI M, SABAGHIAN F, YAVARI M, et al. Enhance the performance of iron oxide nanoparticles in supercapacitor applications through internal contact of α-Fe2O3@CeO2 core-shell[J]. Journal of Alloys and Compounds,2020,819:152949. doi: 10.1016/j.jallcom.2019.152949
    [26]
    ZHANG X Y, LIAO H W, LIU X, et al. Facile synthesis of Fe2O3 nanospheres anchored on oxidized graphitic carbon nitride as a high-performance electrode material for supercapacitors[J]. International Journal of Electrochemical Science,2020,15(3):2133-2144.
    [27]
    王辉辉, 郭俊娥, 高子昂. 绣球荚蒾状硫化钴@富氮炭的设计与构建及超级电容性能[J]. 复合材料学报, 2023, 40(8):4653-4663.

    WANG Huihui, GUO Jun'e, GAO Ziang. Design and fabrication of hydrangea viburnum-like cobalt sulfide@nitrogen-rich carbon for high-performance supercapacitors[J]. Acta Materiae Compositae Sinica,2023,40(8):4653-4663(in Chinese).
    [28]
    ALEXANDRELI M, BROCCHI C B, SOARES D M, et al. Pseudocapacitive behaviour of iron oxides supported on carbon nanofibers as a composite electrode material for aqueous-based supercapacitors[J]. Journal of Energy Storage,2021,42:103052. doi: 10.1016/j.est.2021.103052
    [29]
    DONG K J, YANG Z K, SHI D J, et al. Nitrogen-doped carbon boosting Fe2O3 anode performance for supercapacitors[J]. Journal of Materials Science: Materials in Electronics,2022,33(17):13547-13557.
    [30]
    VIMUNA V M, KARTHIKA U M, ALEX S, et al. Microsphere rGO/MnO2 composites as electrode materials for high-performance symmetric supercapacitors synthesized by reflux reaction[J]. Inorganic Chemistry Communications,2022,141:109508. doi: 10.1016/j.inoche.2022.109508
    [31]
    WANG L, YANG H, LIU X, et al. Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors[J]. Angewandte Chemie International Edition,2017,56(4):1105-1110. doi: 10.1002/anie.201609527
    [32]
    ZHANG Y, DENG F, ZHANG Q, et al. One-step synthesis of polymer based N-doped porous carbon with enriched nitrogen content and its enhanced electrochemical properties in supercapacitors[J]. Journal of Energy Storage,2022,55:105494. doi: 10.1016/j.est.2022.105494
    [33]
    JI L, WANG B, YU Y, et al. N, S co-doped biomass derived carbon with sheet-like microstructures for supercapacitors[J]. Electrochimica Acta,2020,331:135348. doi: 10.1016/j.electacta.2019.135348
    [34]
    SHU Y, MARUYAMA J, IWASAKI S, et al. Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor[J]. Journal of Power Sources,2017,364:374-382. doi: 10.1016/j.jpowsour.2017.08.059
    [35]
    ZHOU J, XU S, NI L, et al. Iron oxide encapsulated in nitrogen-doped carbon as high energy anode material for asymmetric supercapacitors[J]. Journal of Power Sources,2019,438:227047. doi: 10.1016/j.jpowsour.2019.227047
    [36]
    ZHANG S, YIN B, WANG Z, et al. Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods[J]. Chemical Engineering Journal,2016,306:193-203. doi: 10.1016/j.cej.2016.07.057
    [37]
    HU J, SUN L, XIE F, et al. A sandwich-like CoNiLDH@ rGO@CoNi2S4 electrode enabling high mass loading and high areal capacitance for solid-state supercapacitors[J]. Journal of Materials Chemistry A,2022,10(40):21590-21602. doi: 10.1039/D2TA05977K
    [38]
    CHEN J, REN Y, ZHANG H, et al. Ni-Co-Fe layered double hydroxide coated on Ti3C2 MXene for high-performance asymmetric supercapacitor[J]. Applied Surface Science,2021,562:150116. doi: 10.1016/j.apsusc.2021.150116
    [39]
    LIU R Q, SHI X R, WEN Y, et al. Trimetallic synergistic optimization of 0D NiCoFe-P QDs anchoring on 2D porous carbon for efficient electrocatalysis and high-energy supercapacitor[J]. Journal of Energy Chemistry,2022,74:149-158. doi: 10.1016/j.jechem.2022.07.015
    [40]
    JIANG J, SUN Y, CHEN Y, et al. One-step synthesis of nickel cobalt sulfide nanostructure for high-performance supercapacitor[J]. Journal of Materials Science,2019,54(18):11936-11950. doi: 10.1007/s10853-019-03746-8
    [41]
    赵雪静, 孙晓君, 魏金枝, 等. 电化学法原位合成Zn/Co-ZIF材料及电容性能[J]. 复合材料学报, 2021, 38(5):1543-1550. doi: 10.13801/j.cnki.fhclxb.20200831.001

    ZHAO Xuejing, SUN Xiaojun, WEI Jinzhi, et al. Electrochemical synthesis of Zn/Co-ZIF material and capacitive properties[J]. Acta Materiae Compositae Sinica,2021,38(5):1543-1550(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200831.001
    [42]
    CAI D, DU J, ZHU C, et al. Iron oxide nanoneedles anchored on N-doped carbon nanoarrays as an electrode for high-performance hybrid supercapacitor[J]. ACS Applied Energy Materials,2020,3(12):12162-12171. doi: 10.1021/acsaem.0c02238
    [43]
    LI P, XIE H, WANG X, et al. Sustainable production of nano α-Fe2O3/N-doped biochar hybrid nanosheets for supercapacitors[J]. Sustainable Energy & Fuels,2020,4(9):4522-4530.
    [44]
    LUAN Y, NIE G, ZHAO X, et al. The integration of SnO2 dots and porous carbon nanofibers for flexible supercapacitors[J]. Electrochimica Acta,2019,308:121-130. doi: 10.1016/j.electacta.2019.03.204
    [45]
    YUE L, ZHANG S, ZHAO H, et al. One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode[J]. Solid State Ionics,2019,329:15-24. doi: 10.1016/j.ssi.2018.11.006
    [46]
    JI S H, CHODANKAR N R, KIM D H. Aqueous asymmetric supercapacitor based on RuO2-WO3 electrodes[J]. Electrochimica Acta,2019,325:134879. doi: 10.1016/j.electacta.2019.134879
    [47]
    苏小辉, 谢启星, 何青青, 等. α-MnO2@氮掺杂TiO2/碳纸多孔结构构筑高性能超级电容器[J]. 复合材料学报, 2022, 39(4):1628-1637.

    SU Xiaohui, XIE Qixing, HE Qingqing, et al. Building a high-performance supercapacitor with α-MnO2@nitrided TiO2/carbon fiber paper porous structure[J]. Acta Materiae Compositae Sinica,2022,39(4):1628-1637(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (314) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return