Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WANG Ping, SONG Jie, LIU Jiajia, et al. Influence of carboxylic multi-walled carbon nanotubes on the interface state and properties of PBAT/PLA reactive compatibilization system[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5772-5781. doi: 10.13801/j.cnki.fhclxb.20230110.002
Citation: WANG Ping, SONG Jie, LIU Jiajia, et al. Influence of carboxylic multi-walled carbon nanotubes on the interface state and properties of PBAT/PLA reactive compatibilization system[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5772-5781. doi: 10.13801/j.cnki.fhclxb.20230110.002

Influence of carboxylic multi-walled carbon nanotubes on the interface state and properties of PBAT/PLA reactive compatibilization system

doi: 10.13801/j.cnki.fhclxb.20230110.002
Funds:  National Natural Science Foundation of China (51903002); Major Science and Technology Projects of Anhui Province (202103a05020031); University Natural Science Outstanding Youth Research Projects of Anhui Province (2022AH020024); University Major Research Projects in Philosophy and Social Sciences of Anhui Province (2022AH040047); Anhui Jianzhu University PhD Startup Fund (2019QDZ22); Excellent Youth Projects of Anhui Provincal Natural Science Foundation (2308085Y34); Research Fund for Postdoctoral Researchers in Anhui Province (2020B413); University Provincial Natural Science Research Projects of Anhui Province (YJS20210509)
  • Received Date: 2022-11-08
  • Accepted Date: 2022-12-25
  • Rev Recd Date: 2022-12-14
  • Available Online: 2023-01-10
  • Publish Date: 2023-10-15
  • The polylactic acid (PLA) has great potential in the preparation of environmentally friendly dielectric materials due to its biodegradability and high strength, but low dielectric constant limits its wide application in this field. The carboxylic multi-walled carbon nanotubes (MWCNTs—COOH), epoxy-based chain extender (ADR) and poly(butylene adipate-co-terephthalate) (PBAT) were introduced into PLA by melt blending to prepare MWCNTs—COOH-ADR-PBAT/PLA composites. The effects of MWCNTs—COOH on the inter-molecular chain interactions, processing, crystallization, dynamic mechanical, mechanical and dielectric properties of the PBAT/PLA reactive compatibilization system were studied by FTIR, Torque rheometer, DSC, DMA, electron universal testing machine, SEM and LCR dielectric measuring instrument, etc. The results show that the carboxyl group in MWCNTs—COOH preferentially reacts with the reactive compatibilizer during the blending process, which reduces the catalytic compatibilization efficiency of the reactive compatibilizer on the interface between PLA and PBAT. At the same time, MWCNTs—COOH preferentially disperse at the two-phase interface under the drive of dynamics and thermodynamics, giving the material a better rigid toughness balance, while significantly improving the dielectric properties of the material. When the MWCNTs—COOH content is 4wt%, the dielectric constant and dielectric loss of MWCNTs—COOH-ADR-PBAT/PLA composite at 100 Hz were 5.35 and 0.06 respectively, and the material had good comprehensive properties.

     

  • loading
  • [1]
    谢蕊颖, 刘雷鹏, 吕生华, 等. 高储能PVDF基纳米复合材料研究进展[J]. 绝缘材料, 2022, 55(3):1-9. doi: 10.16790/j.cnki.1009-9239.im.2022.03.001

    XIE Ruiying, LIU Leipeng, LYU Shenghua, et al. Research progress of PVDF-based nanocomposites for high energy storage[J]. Insulating Materials,2022,55(3):1-9(in Chinese). doi: 10.16790/j.cnki.1009-9239.im.2022.03.001
    [2]
    CHEN R, LIU Y, PENG F Z. A solid state variable capacitor with minimum capacitor[J]. IEEE Transactions on Power Electronics,2017,32(7):5035-5044. doi: 10.1109/TPEL.2016.2606582
    [3]
    HU Z, LIU X, REN T, et al. Research progress of low dielectric constant polymer materials[J]. Journal of Polymer Engineering,2022,42(8):677-687. doi: 10.1515/polyeng-2021-0338
    [4]
    TAN D Q. The search for enhanced dielectric strength of polymer-based dielectrics: A focused review on polymer nanocomposites[J]. Journal of Applied Polymer Science,2020,137(33):49379. doi: 10.1002/app.49379
    [5]
    URQUIJO J, ARANBURU N, DAGRÉOU S, et al. CNT-induced morphology and its effect on properties in PLA/PBAT-based nanocomposites[J]. European Polymer Journal,2017,93:545-555. doi: 10.1016/j.eurpolymj.2017.06.035
    [6]
    DING Y, LU B, WANG P, et al. PLA-PBAT-PLA tri-block copolymers: Effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends[J]. Polymer Degradation and Stability,2018,147:41-48. doi: 10.1016/j.polymdegradstab.2017.11.012
    [7]
    JANG H, KWON S, KIM S J, et al. Maleic anhydride-grafted PLA preparation and characteristics of compatibilized PLA/PBSeT blend films[J]. International Journal of Molecular Sciences,2022,23(13):7166. doi: 10.3390/ijms23137166
    [8]
    尚晓煜, 刘晓南, 谢锦辉, 等. PLA/PBAT复合材料研究进展[J]. 工程塑料应用, 2021, 49(6):157-164.

    SHANG Xiaoyu, LIU Xiaonan, XIE Jinhui, et al. Advance in research of polylactic acid/poly(butyleneadipate-co-terephthalate) composites[J]. Engineering Plastics Application,2021,49(6):157-164(in Chinese).
    [9]
    WANG X, PENG S, CHEN H, et al. Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization[J]. Composites Part B: Engineering,2019,173:107028. doi: 10.1016/j.compositesb.2019.107028
    [10]
    DENG Y, YU C, WONGWIWATTANA P, et al. Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology[J]. Journal of Polymers and the Environment,2018,26(9):3802-3816. doi: 10.1007/s10924-018-1256-x
    [11]
    SRITHAM E, PHUNSOMBAT P, CHAISHOME J. Tensile properties of PLA/PBAT blend systems and PLA fibre-reinforced PBAT composite[C]//MATEC Web of Conferences. Paris: EDP Sciences, 2018, 192: 03014.
    [12]
    赵海鹏, 胡顺朋, 夏学莲, 等. 扩链剂增容PBAT/PLA共混体系结构及性能[J]. 工程塑料应用, 2021, 49(10):131-137.

    ZHAO Haipeng, HU Shunpeng, XIA Xuelian, et al. Structures and properties of PBAT/PLA composites with chain extender[J]. Engineering Plastics Application,2021,49(10):131-137(in Chinese).
    [13]
    WANG B, JIN Y, KANG K, et al. Investigation on compatibility of PLA/PBAT blends modified by epoxy-terminated branched polymers through chemical micro-crosslinking[J]. e-Polymers,2020,20(1):39-54. doi: 10.1515/epoly-2020-0005
    [14]
    FARIAS DA SILVA J M, SOARES B G. Epoxidized cardanol-based prepolymer as promising biobased compatibilizing agent for PLA/PBAT blends[J]. Polymer Testing,2021,93:106889. doi: 10.1016/j.polymertesting.2020.106889
    [15]
    JIA S, YU D, ZHU Y, et al. A feasible strategy to constructing hybrid conductive networks in PLA-based composites modified by CNT-d-RGO particles and PEG for mechanical and electrical properties[J]. Polymers for Advanced Technologies,2020,31(4):699-712. doi: 10.1002/pat.4806
    [16]
    WANG P, GAO S, CHEN X, et al. Effect of hydroxyl and carboxyl-functionalized carbon nanotubes on phase morphology, mechanical and dielectric properties of poly (lactide)/poly(butylene adipate-co-terephthalate) composites[J]. International Journal of Biological Macromolecules,2022,206:661-669. doi: 10.1016/j.ijbiomac.2022.02.183
    [17]
    International Organization for Standardization. Plastics—Determination of tensile properties—Part 1: General principles: ISO 527-1—2019[S]. Geneva: International Organization for Standardization, 2019.
    [18]
    ALIOTTA L, CINELLI P, COLTELLI M B, et al. Rigid filler toughening in PLA-calcium carbonate composites: Effect of particle surface treatment and matrix plasticization[J]. European Polymer Journal,2019,113:78-88. doi: 10.1016/j.eurpolymj.2018.12.042
    [19]
    SUN H, ZHANG H, LIU S, et al. Interfacial polarization and dielectric properties of aligned carbon nanotubes/polymer composites: The role of molecular polarity[J]. Composites Science and Technology,2018,154:145-153. doi: 10.1016/j.compscitech.2017.11.008
    [20]
    ZHANG T, HAN W Y, ZHANG C L, et al. Effect of chain extender and light stabilizer on the weathering resistance of PBAT/PLA blend films prepared by extrusion blowing[J]. Polymer Degradation and Stability,2021,183:109455. doi: 10.1016/j.polymdegradstab.2020.109455
    [21]
    WU D D, GUO Y, HUANG A P, et al. Effect of the multi-functional epoxides on the thermal, mechanical and rheological properties of poly(butylene adipate-co-terephthalate)/polylactide blends[J]. Polymer Bulletin,2021,78(10):5567-5591. doi: 10.1007/s00289-020-03379-x
    [22]
    WANG P, SONG T, ABO-DIEF H M, et al. Effect of carbon nanotubes on the interface evolution and dielectric properties of polylactic acid/ethylene-vinyl acetate copolymer nanocomposites[J]. Advanced Composites and Hybrid Materials,2022,5(2):1100-1110.
    [23]
    WANG P, ZHOU Y, HU X, et al. Improved mechanical and dielectric properties of PLA/EMA-GMA nanocomposites based on ionic liquids and MWCNTs[J]. Composites Science and Technology,2020,200:108347. doi: 10.1016/j.compscitech.2020.108347
    [24]
    TANNER K E, WANG J S, KJELLSON F, et al. Comparison of two methods of fatigue testing bone cement[J]. Acta Biomaterialia,2010,6(3):943-952. doi: 10.1016/j.actbio.2009.09.009
    [25]
    URQUIJO J, DAGRÉOU S, GUERRICA-ECHEVARRÍA G, et al. Morphology and properties of electrically and rheologically percolated PLA/PCL/CNT nanocomposites[J]. Journal of Applied Polymer Science,2017,134(36):45265. doi: 10.1002/app.45265
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (307) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return