Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WU Longqiang, OU Yunfu, MAO Dongsheng, et al. Interlaminar properties and toughening mechanisms of aligned carbon nanotube fiber veil interleaved carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5611-5620. doi: 10.13801/j.cnki.fhclxb.20221228.002
Citation: WU Longqiang, OU Yunfu, MAO Dongsheng, et al. Interlaminar properties and toughening mechanisms of aligned carbon nanotube fiber veil interleaved carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5611-5620. doi: 10.13801/j.cnki.fhclxb.20221228.002

Interlaminar properties and toughening mechanisms of aligned carbon nanotube fiber veil interleaved carbon fiber/epoxy composites

doi: 10.13801/j.cnki.fhclxb.20221228.002
Funds:  Natural Science Foundation of Ningbo (2021J208); Fellowship of China Postdoctoral Science Foundation (2022M713241); "One Hundred Talented People" of the Chinese Academy of Sciences (2021R01005); Ningbo Yongjiang Talent Introduction Programme (2021A-045-C)
  • Received Date: 2022-10-20
  • Accepted Date: 2022-12-03
  • Rev Recd Date: 2022-11-27
  • Available Online: 2022-12-29
  • Publish Date: 2023-10-15
  • Carbon fiber reinforced polymer (CFRP) composites are widely used because of their excellent properties such as high specific strength and high specific modulus, but their mechanical properties along the thickness are poor due to the laminar structure characteristics and the intrinsic brittleness of epoxy resin, and they are prone to delamination under out-of-plane impact and in-plane compression loads, which in turn reduce the strength of the composites. Therefore it is especially important to improve the interlaminar fracture toughness of the composites. In this paper, we attempt to improve the interlaminar fracture toughness of the composite by introducing highly oriented carbon nanotube (CNT) fiber veils in the interlaminar region. To ensure that the fiber veils are well infiltrated by the resin, they are first immersed in an epoxy resin solution diluted with acetone. After the acetone evaporated, it is inserted into the interlayer region of the homemade carbon fiber prepreg and subsequently cured by a hot pressing process. The mode I and mode II interlaminar fracture toughness of the toughened samples are evaluated via ASTM testing standards. Combined with the optical microscopic observation of the cross-section and scanning electron microscopy analysis of the fracture surface, the crack propagation paths are clearly shown and the interlaminar toughening mechanisms of CNT fiber veils are revealed. The results show that the mode I and mode II interlaminar fracture toughness of CNT veil toughened samples are improved by 37.4% and 41.8%, respectively. The toughening mechanisms mainly include matrix toughening, strengthening carbon fiber bridging and crack deflection.

     

  • loading
  • [1]
    MUGAHED AMRAN Y H, ALYOUSEF R, RASHID R S M, et al. Properties and applications of FRP in strengthening RC structures: A review[J]. Structures,2018,16:208-238. doi: 10.1016/j.istruc.2018.09.008
    [2]
    BOON Y D, JOSHI S C. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites[J]. Materials Today Communications,2020,22:100830. doi: 10.1016/j.mtcomm.2019.100830
    [3]
    LU W, ZU M, BYUN J H, et al. State of the art of carbon nanotube fibers: Opportunities and challenges[J]. Advanced Materials,2012,24(14):1805-1833.
    [4]
    IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. doi: 10.1038/354056a0
    [5]
    TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature,1996,381(6584):678-680. doi: 10.1038/381678a0
    [6]
    WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science,1997,277(5334):1971-1975.
    [7]
    OUYANG Q, WANG X, LIU L. High crack self-healing efficiency and enhanced free-edge delamination resistance of carbon fibrous composites with hierarchical interleaves[J]. Composites Science and Technology,2022,217:109115. doi: 10.1016/j.compscitech.2021.109115
    [8]
    GODARA A, MEZZO L, LUIZI F, et al. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites[J]. Carbon,2009,47(12):2914-2923. doi: 10.1016/j.carbon.2009.06.039
    [9]
    WARRIER A, GODARA A, ROCHEZ O, et al. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix[J]. Composites Part A: Applied Science and Manufacturing,2010,41(4):532-538. doi: 10.1016/j.compositesa.2010.01.001
    [10]
    KIM M, RHEE K, LEE J, et al. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes[J]. Composites Part B: Engineering,2011,42(5):1257-1261. doi: 10.1016/j.compositesb.2011.02.005
    [11]
    DE VOLDER M F, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science,2013,339(6119):535-539. doi: 10.1126/science.1222453
    [12]
    ALMUHAMMADI K, ALFANO M, YANG Y, et al. Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes[J]. Materials & Design,2014,53:921-927.
    [13]
    WICKS S S, WANG W, WILLIAMS M R, et al. Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes[J]. Composites Science and Technology,2014,100:128-135. doi: 10.1016/j.compscitech.2014.06.003
    [14]
    BOROWSKI E, SOLIMAN E, KANDIL U F, et al. Interlaminar fracture toughness of CFRP laminates incorporating multi-walled carbon nanotubes[J]. Polymers,2015,7(6):1020-1045. doi: 10.3390/polym7061020
    [15]
    GOJNY F H, WICHMANN M H, FIEDLER B, et al. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—A comparative study[J]. Composites Science and Technology,2005,65(15):2300-2313. doi: 10.1016/j.compscitech.2005.04.021
    [16]
    VILATELA J J, KHARE R, WINDLE A H. The hierarchical structure and properties of multifunctional carbon nanotube fibre composites[J]. Carbon,2012,50(3):1227-1234. doi: 10.1016/j.carbon.2011.10.040
    [17]
    OU Y, GONZÁLEZ C, VILATELA J J. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105477. doi: 10.1016/j.compositesa.2019.105477
    [18]
    NGUYEN F, TUN S, HARO A, et al. Interlaminar reinforcement by aligned carbon nanotubes in carbon fiber reinforced polymer composites[C]//19th International Conference on Composite Materials (ICCM). Montréal: ICCM, 2013: 3873-3880.
    [19]
    NISTAL A, FALZON B G, HAWKINS S C, et al. Enhancing the fracture toughness of hierarchical composites through amino-functionalised carbon nanotube webs[J]. Composites Part B: Engineering,2019,165:537-544. doi: 10.1016/j.compositesb.2019.02.001
    [20]
    DI LEONARDO S, NISTAL A, CATALANOTTI G, et al. Mode I interlaminar fracture toughness of thin-ply laminates with CNT webs at the crack interface[J]. Composite Structures,2019,225:111178. doi: 10.1016/j.compstruct.2019.111178
    [21]
    李强, 殷新意, 于妍妍, 等. 取向碳纳米管/环氧树脂复合薄膜制备及结构/性能表征[J]. 复合材料学报, 2021, 38(9):2767-2775.

    LI Qiang, YIN Xinyi, YU Yanyan, et al. Preparation and characterization of aligned carbon nanotubes/epoxy composite films[J]. Acta Materiae Compositae Sinica,2021,38(9):2767-2775(in Chinese).
    [22]
    American Society for Testing and Materials. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528-01[S]. Pennsylvania: ASTM International, 2007.
    [23]
    American Society for Testing and Materials. Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymermatrix composites: ASTM D7905[S]. Pennsylvania: ASTM International, 2014.
    [24]
    张远, 于妍妍, 何静宇, 等. 碳纳米管薄膜增强复合材料I型断裂韧性研究[J]. 炭素技术, 2018, 37(4):15-20, 32.

    ZHANG Yuan, YU Yanyan, HE Jingyu, et al. The model I fracture toughness of composites enhanced by using carbon nanotube film[J]. Carbon Techniques,2018,37(4):15-20, 32(in Chinese).
    [25]
    HERRÁEZ M, PICHLER N, BOTSIS J. Improving delamination resistance through tailored defects[J]. Composite Structures,2020,247:112422. doi: 10.1016/j.compstruct.2020.112422
    [26]
    KHAN R. Fiber bridging in composite laminates: A literature review[J]. Composite Structures,2019,229:111418. doi: 10.1016/j.compstruct.2019.111418
    [27]
    BASOGLU M F, ZERIN Z, KEFAL A, et al. A computational model of peridynamic theory for deflecting behavior of crack propagation with micro-cracks[J]. Computational Materials Science,2019,162:33-46. doi: 10.1016/j.commatsci.2019.02.032
    [28]
    SHIN Y C, KIM S M. Enhancement of the interlaminar fracture toughness of a carbon-fiber-reinforced polymer using interleaved carbon nanotube buckypaper[J]. Applied Sciences,2021,11(15):6821. doi: 10.3390/app11156821
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (817) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return