Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
ZOU Jiali, YU Yunpeng, YAN Yuqing, et al. Fabrication and properties of lignin-reinforced self-healing polyurea elastomer[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5666-5677. doi: 10.13801/j.cnki.fhclxb.20221227.001
Citation: ZOU Jiali, YU Yunpeng, YAN Yuqing, et al. Fabrication and properties of lignin-reinforced self-healing polyurea elastomer[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5666-5677. doi: 10.13801/j.cnki.fhclxb.20221227.001

Fabrication and properties of lignin-reinforced self-healing polyurea elastomer

doi: 10.13801/j.cnki.fhclxb.20221227.001
Funds:  National Key R&D Program of China in 13th Five-Year Period (2019 YFD1101203); Natural Science Foundation of Heilongjiang Province (LH2022 C011)
  • Received Date: 2022-10-27
  • Accepted Date: 2022-12-20
  • Rev Recd Date: 2022-12-03
  • Available Online: 2022-12-29
  • Publish Date: 2023-10-15
  • The preparation of polymeric materials with good mechanical properties and efficient self-healing properties at room temperature has been a difficult challenge. Herein, a lignin-reinforced self-healing polyurea elastomer (T-L-PUA) was prepared by a two-step process (polyurea reaction and Schiff base reaction) using natural aromatic-based lignin as the reinforcing phase. The effects of lignin addition on the thermal, UV-blocking and mechanical properties of T-L-PUA were investigated and the self-healing property and recyclability based on dynamic reversible imine bonding (C=N) of T-L-PUA were analyzed. The results show that the thermal stability of T-L-PUA is significantly enhanced with the increase of lignin ratio, where the maximum increase of residual carbon is 16.6% compared with the sample without lignin. The low transmittance of T-L-PUA in the UV region (280-400 nm) helps to realize the UV-blocking function. Compared with the average transmittance of self-healing polyurea composite elastomer (T-PUA) (41.6%), the average transmittance of all T-L-PUAs is around 0.2%. The best mechanical property appears at 20% of lignin addition, and the corresponding tensile strength of T-L-PUA is 12.44 MPa, which is 937% higher than that of pure polyurea elastomer. T-L-PUA exhibits good self-healing properties. When T-L-PUA is repaired at room temperature for 48 h, the recovery efficiencies of tensile strength and elongation at break is above 91% and 92%, respectively. In addition, the T-L-PUA can also be recovered by the hot-pressing and solvent dissolution processes, and the mechanical properties remain largely unchanged after remolding.

     

  • loading
  • [1]
    SANTANA J S, CARDOSO E S, TRIBONI E R, et al. Polyureas versatile polymers for new academic and technological applications[J]. Polymers,2021,13(24):4393. doi: 10.3390/polym13244393
    [2]
    ZHANG R, HUANG W B, LYU P, et al. Polyurea for blast and impact protection: A review[J]. Polymers,2022,14(13):2670. doi: 10.3390/polym14132670
    [3]
    SHOJAEI B, NAJAFI M, YAZDANBAKHSH A, et al. A review on the applications of polyurea in the construction industry[J]. Polymers for Advanced Technologies,2021,32(8):2797-2812. doi: 10.1002/pat.5277
    [4]
    WANG Z H, SCHERES L, XIA H S, et al. Developments and challenges in self-healing antifouling materials[J]. Advanced Functional Materials,2020,30(26):1908098. doi: 10.1002/adfm.201908098
    [5]
    LI Z L, YU R, GUO B L. Shape-memory and self-healing polymers based on dynamic covalent bonds and dynamic noncovalent interactions: Synthesis, mechanism, and application[J]. ACS Applied Bio Materials,2021,4(8):5926-5943. doi: 10.1021/acsabm.1c00606
    [6]
    周威明, 丁春香, 潘明珠. 基于动态共价交联网络自修复涂层的研究进展[J]. 复合材料学报, 2023, 40(3):1381-1394. doi: 10.13801/j.cnki.fhclxb.20220424.002

    ZHOU Weiming, DING Chunxiang, PAN Mingzhu. Research progress of self-healing coatings based on dynamic covalent crosslinking[J]. Acta Materiae Compositae Sinica,2023,40(3):1381-1394(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220424.002
    [7]
    LI T, XIE Z, XU J, et al. Design of a self-healing cross-linked polyurea with dynamic cross-links based on disulfide bonds and hydrogen bonding[J]. European Polymer Journal,2018,107:249-257. doi: 10.1016/j.eurpolymj.2018.08.005
    [8]
    BAO C Y, JIANG Y J, ZHANG H Y, et al. Room-temperature self-healing and recyclable tough polymer composites using nitrogen-coordinated boroxines[J]. Advanced Functional Materials,2018,28(23):1800560. doi: 10.1002/adfm.201800560
    [9]
    WEI Z, WANG Y, FU X, et al. Recyclable and reprocessable thermosetting polyurea with high performance based on Diels-Alder dynamic covalent crosslinking[J]. Macromolecular Research,2021,29(8):562-568. doi: 10.1007/s13233-021-9064-x
    [10]
    LI Y H, LI W J, SUN A L, et al. A self-reinforcing and self-healing elastomer with high strength, unprecedented toughness and room-temperature reparability[J]. Materials Horizons,2021,8(1):267-275. doi: 10.1039/D0MH01447H
    [11]
    LI C H, ZUO J L. Self-healing polymers based on coordination bonds[J]. Advanced Materials,2020,32(27):1903762.
    [12]
    BURATTINI S, COLQUHOUN H M, FOX J D, et al. A self-repairing, supramolecular polymer system: Healability as a consequence of donor-acceptor π-π stacking interactions[J]. Chemical Communications,2009(44):6717-6719. doi: 10.1039/b910648k
    [13]
    GAN M J, NIU Y Q, QU X J, et al. Lignin to value-added chemicals and advanced materials: Extraction, degradation, and functionalization[J]. Green Chemistry,2022,24(20):7705-7750. doi: 10.1039/D2GC00092J
    [14]
    BALAKSHIN M Y, CAPANEMA E A, SULAEVA I, et al. New opportunities in the valorization of technical lignins[J]. ChemSusChem,2021,14(4):1016-1036. doi: 10.1002/cssc.202002553
    [15]
    SUN R C. Lignin source and structural characterization[J]. ChemSusChem,2020,13(17):4385-4393. doi: 10.1002/cssc.202001324
    [16]
    ZHANG X, LIU W F, LIU W Q, et al. High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties[J]. International Journal of Biological Macromolecules,2020,142:551-558. doi: 10.1016/j.ijbiomac.2019.09.129
    [17]
    LI H, SUN J T, WANG C, et al. High modulus, strength, and toughness polyurethane elastomer based on unmodified lignin[J]. ACS Sustainable Chemistry & Engineering,2017,5(9):7942-7949.
    [18]
    中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Rubber, vulcanized or thermoplastic—Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [19]
    WU P X, CHENG H Y, WANG Y, et al. New kind of thermoplastic polyurea elastomers synthesized from CO2 and with self-healing properties[J]. ACS Sustainable Chemistry & Engineering,2020,8(33):12677-12685.
    [20]
    SHI Z, KANG J, ZHANG L. Water-enabled room-temperature self-healing and recyclable polyurea materials with super-strong strength, toughness, and large stretchability[J]. ACS Applied Materials & Interfaces,2020,12(20):23484-23493.
    [21]
    CHEN T, FANG L, LI X, et al. Self-healing polymer coatings of polyurea-urethane/epoxy blends with reversible and dynamic bonds[J]. Progress in Organic Coatings,2020,147:105876. doi: 10.1016/j.porgcoat.2020.105876
    [22]
    ZHANG S, QIN B, XU J F, et al. Multi-recyclable shape memory supramolecular polyurea with long cycle life and superior stability[J]. ACS Materials Letters,2021,3(4):331-336. doi: 10.1021/acsmaterialslett.1c00053
    [23]
    王娜, 李炳奇, 谢贵堂, 等. PPG/PTMG基单组分聚脲的制备及性能研究[J]. 化工新型材料, 2020, 48(10):143-145, 150. doi: 10.19817/j.cnki.issn1006-3536.20200805.098

    WANG Na, LI Bingqi, XIE Guitang, et al. Preparation and properties of PPG/PTMG based one-component polyurea[J]. New Chemical Materials,2020,48(10):143-145, 150(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.20200805.098
    [24]
    程家骥, 王旭, 王浩东. 聚脲材料包覆可膨胀石墨微胶囊阻燃天然橡胶[J]. 复合材料学报, 2021, 38(1):232-238. doi: 10.13801/j.cnki.fhclxb.20200513.002

    CHENG Jiaji, WANG Xu, WANG Haodong. Expandable graphite microencapsulated with polyurea shell flame retardant natural rubber[J]. Acta Materiae Compositae Sinica,2021,38(1):232-238(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200513.002
    [25]
    胡秀英, 毛冲冲, 贺畅, 等. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12):139-146. doi: 10.11868/j.issn.1001-4381.2021.000275

    HU Xiuying, MAO Chongchong, HE Chang, et al. Preparation and lithium storage properties of poly (Schiff base)/carbon nanotubes composites[J]. Journal of Materials Engineering,2021,49(12):139-146(in Chinese). doi: 10.11868/j.issn.1001-4381.2021.000275
    [26]
    郭蒙, 孙晓日, 张运臣, 等. 3-醛基水杨酸及其Schiff碱的合成与表征[J]. 潍坊学院学报, 2011, 11(2):83-86, 133. doi: 10.3969/j.issn.1671-4288.2011.02.021

    GUO Meng, SUN Xiaori, ZHANG Yunchen, et al. Synthesis and characterization of 3-formylsalicylic acid and its Schiff base[J]. Journal of Weifang University,2011,11(2):83-86, 133(in Chinese). doi: 10.3969/j.issn.1671-4288.2011.02.021
    [27]
    孙自才, 魏峥, 魏可镁. 高密度自由醛基聚合物粉体材料的制备与应用[J]. 高等学校化学学报, 2008, 29(11):2218-2222. doi: 10.3321/j.issn:0251-0790.2008.11.020

    SUN Zicai, WEI Zheng, WEI Kemei. Preparation and application of the polymer powder with high density of free aldehyde linkers[J]. Chemical Journal of Chinese Universities,2008,29(11):2218-2222(in Chinese). doi: 10.3321/j.issn:0251-0790.2008.11.020
    [28]
    HUANG S Q, SU S Y, GAN H B, et al. Facile fabrication and characterization of highly stretchable lignin-based hydroxyethyl cellulose self-healing hydrogel[J]. Carbohydrate Polymers,2019,223:115080. doi: 10.1016/j.carbpol.2019.115080
    [29]
    来雅赟, 尚欣宇, 邸明伟, 等. 木质素基聚酯型聚氨酯胶黏剂的制备及表征[J]. 化学与黏合, 2018, 40(6):397-400.

    LAI Yayun, SHANG Xinyu, DI Mingwei, et al. Preparation and characterization of lignin based polyester polyurethane adhesive[J]. Chemistry and Adhesion,2018,40(6):397-400(in Chinese).
    [30]
    李锋, 李逸青, 毛海立, 等. 低共熔溶剂分离油茶果壳木质素及其抗氧化活性和热解特性分析[J]. 食品工业科技, 2022, 43(24):261-267. doi: 10.13386/j.issn1002-0306.2022040112

    LI Feng, LI Yiqing, MAO Haili, et al. Antioxidant activity and pyrolysis properties of lignin extracted from Camellia oleifera shell by deep eutectic solvents(DES)[J]. Science and Technology of Food Industry,2022,43(24):261-267(in Chinese). doi: 10.13386/j.issn1002-0306.2022040112
    [31]
    况培培, 张一静, 陈莹, 等. 木质素复合氧化石墨烯导电水凝胶制备及性能[J]. 林业工程学报, 2022, 7(4):93-99.

    KUANG Peipei, ZHANG Yijing, CHEN Ying, et al. Preparation and properties of conductive hydrogels derived from lignin-graphene oxide composite[J]. Journal of Forestry Engineering,2022,7(4):93-99(in Chinese).
    [32]
    ZHANG T, CAI W, CHU F K, et al. Hydroxyapatite/polyurea nanocomposite: Preparation and multiple performance enhancements[J]. Composites Part A: Applied Science and Manufacturing,2020,128:105681. doi: 10.1016/j.compositesa.2019.105681
    [33]
    ZHAO W, LIANG Z H, FENG Z H, et al. New kind of lignin/polyhydroxyurethane composite: Green synthesis, smart properties, promising applications, and good reprocessability and recyclability[J]. ACS Applied Materials & Interfaces,2021,13(24):28938-28948.
    [34]
    JIA Z, LU C X, ZHOU P C, et al. Preparation and characterization of high boiling solvent lignin-based polyurethane film with lignin as the only hydroxyl group provider[J]. RSC Advances,2015,5(66):53949-53955. doi: 10.1039/C5RA09477A
    [35]
    SILVA T F D, MENEZES F, MONTAGNA L S, et al. Effect of lignin as accelerator of the biodegradation process of poly(lactic acid)/lignin composites[J]. Materials Science and Engineering: B,2019,251:114441. doi: 10.1016/j.mseb.2019.114441
    [36]
    SUN D, LV Z W, RAO J, et al. Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: A review[J]. Carbohydrate Polymers,2022,281:119050. doi: 10.1016/j.carbpol.2021.119050
    [37]
    SUN N, DI M W, LIU Y. Lignin-containing polyurethane elastomers with enhanced mechanical properties via hydrogen bond interactions[J]. International Journal of Biological Macromolecules,2021,184:1-8. doi: 10.1016/j.ijbiomac.2021.06.038
    [38]
    POSOKNISTAKUL P, TANGKRAKUL C, CHAOSUANPHAE P, et al. Fabrication and characterization of lignin particles and their ultraviolet protection ability in PVA composite film[J]. ACS Omega,2020,5(33):20976-20982. doi: 10.1021/acsomega.0c02443
    [39]
    LUO T, WANG C, JI X X, et al. Innovative production of lignin nanoparticles using deep eutectic solvents for multifunctional nanocomposites[J]. International Journal of Biological Macromolecules,2021,183:781-789. doi: 10.1016/j.ijbiomac.2021.05.005
    [40]
    GOUVEIA J R, DE SOUSA JUNIOR R R, RIBEIRO A O, et al. Effect of soft segment molecular weight and NCO:OH ratio on thermomechanical properties of lignin-based thermoplastic polyurethane adhesive[J]. European Polymer Journal,2020,131:109690. doi: 10.1016/j.eurpolymj.2020.109690
    [41]
    LI X J, JIANG C M, ZHAO F N, et al. Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing[J]. Nano Energy,2019,61:78-85. doi: 10.1016/j.nanoen.2019.04.025
    [42]
    ZHANG Y, LIAO J J, FANG X C, et al. Renewable high-performance polyurethane bioplastics derived from lignin–poly(ε-caprolactone)[J]. ACS Sustainable Chemistry & Engineering,2017,5(5):4276-4284.
    [43]
    SHANG Z H, DING D L, WANG X, et al. High thermal conductivity of self-healing polydimethylsiloxane elastomer composites by the orientation of boron nitride nano sheets[J]. Polymers for Advanced Technologies,2021,32(12):4745-4754. doi: 10.1002/pat.5467
    [44]
    MO P J, HU Z Y, MO Z J, et al. Fast self-healing and self-cleaning anticorrosion coating based on dynamic reversible imine and multiple hydrogen bonds[J]. ACS Applied Polymer Materials,2022,4(7):4709-4718. doi: 10.1021/acsapm.2c00294
    [45]
    SUN N, WANG Z F, MA X, et al. Preparation and characterization of lignin-containing self-healing polyurethane elastomers with hydrogen and disulfide bonds[J]. Industrial Crops and Products,2021,174:114178. doi: 10.1016/j.indcrop.2021.114178
    [46]
    MIN J B, ZHOU Z X, WANG H N, et al. Room temperature self-healing and recyclable conductive composites for flexible electronic devices based on imine reversible covalent bond[J]. Journal of Alloys and Compounds,2022,894:162433. doi: 10.1016/j.jallcom.2021.162433
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (741) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return