Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
GAO Qian, CHENG Dan, DUAN Manhua, et al. Preparation and properties of polyphosphazene modified composite separator for lithium-ion battery[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5831-5840. doi: 10.13801/j.cnki.fhclxb.20221226.004
Citation: GAO Qian, CHENG Dan, DUAN Manhua, et al. Preparation and properties of polyphosphazene modified composite separator for lithium-ion battery[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5831-5840. doi: 10.13801/j.cnki.fhclxb.20221226.004

Preparation and properties of polyphosphazene modified composite separator for lithium-ion battery

doi: 10.13801/j.cnki.fhclxb.20221226.004
Funds:  National Natural Science Foundation of China (21676282); Project of Education Department of Liaoning Province (LJK0411); Fushun "Fushun Talent Plan" Project (FSYC202107010)
  • Received Date: 2022-11-04
  • Accepted Date: 2022-12-15
  • Rev Recd Date: 2022-12-05
  • Available Online: 2022-12-27
  • Publish Date: 2023-10-15
  • Separators with superior electrolyte property and thermal stability are in urgent need for lithium-ion batteries (LIBs). This work designed a space-confined polymerization method to fabricate an advanced composite separator, in which poly(cyclotriphosphazene-co-4, 4-sulfonyldiphenol) microspheres (PZSMS) grow directly in poly(vinylidene fluoride) (PVDF) membrane as the substrate. To regulate the size and distribution of PZSMS, triethylamine vapor as acid-binding agent is introduced into PVDF membrane separately from the polymeric monomers. The physical-chemical properties and battery performances of PPCS were systematically characterized, such as the structure, tensile strength, electrolyte property and thermal resistance as well as the charge-discharge performance. The results show that under the optimized conditions, the liquid absorbency and ionic conductivity of the composite membrane reach 433% and 1.47 mS/cm, respectively, the tensile strength is greater than 25 MPa, and the thermal shrinkage rate is lower than 2% at 150℃ and 0.5 h, which is better than that of PVDF based membrane and commercial polyethylene (PE) membrane. The LiCoO2/graphite cells with optimized separators exhibit satisfactory discharge capacity retention of 76% at 8.0 C compared with that at 0.5 C and preferable cycling stability with a capacity retention of 97% after 200 cycles. Therefore, PZSMS modified PVDF fibrous membrane prepared by space-confined polymerization method shows a good application prospect in lithium-ion batteries.

     

  • loading
  • [1]
    HUANG X, HE R, LI M, et al. Functionalized separator for next-generation batteries[J]. Materials Today,2020,41:143-155. doi: 10.1016/j.mattod.2020.07.015
    [2]
    MITTAL N, OJANGUREN A, CAVASIN N, et al. Transient rechargeable battery with a high lithium transport number cellulosic separator[J]. Advanced Functional Materials,2021,31(33):2101827. doi: 10.1002/adfm.202101827
    [3]
    ZHAI P, LIU K, WANG Z, et al. Multifunctional separators for high-performance lithium ion batteries[J]. Journal of Power Sources,2021,499:229973. doi: 10.1016/j.jpowsour.2021.229973
    [4]
    FRANCIS C F J, KYRATZIS I L, BEST A S. Lithium-ion battery separators for ionic-liquid electrolytes: A review[J]. Advanced Materials,2020,32(18):1904205. doi: 10.1002/adma.201904205
    [5]
    YUAN B, WEN K, CHEN D, et al. Composite separators for robust high rate lithium ion batteries[J]. Advanced Functional Materials,2021,31(32):2101420. doi: 10.1002/adfm.202101420
    [6]
    张红涛, 胡昊, 顾波, 等. 聚偏氟乙烯-沸石复合锂电隔膜的制备及性能[J]. 复合材料学报, 2017, 34(3):625-631.

    ZHANG Hongtao, HU Hao, GU Bo, et al. Preparation and performances of PVDF-zeolite composite separator for lithium-ion batteries[J]. Acta Materiae Compositae Sinica,2017,34(3):625-631(in Chinese).
    [7]
    LIANG J, CHEN Q, LIAO X, et al. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries[J]. Angewandte Chemie,2020,132(16):6623-6628. doi: 10.1002/ange.201915440
    [8]
    巩桂芬, 王磊, 徐阿文. 静电纺PMMA/EVOH-SO3Li锂离子电池隔膜复合材料的制备及性能[J]. 复合材料学报, 2018, 35(3):477-484.

    GONG Guifen, WANG Lei, XU Awen. Preparation and properties of PMMA/EVOH-SO3Li Li-ion battery separator composite by electrospinning[J]. Acta Materiae Compositae Sinica,2018,35(3):477-484(in Chinese).
    [9]
    HEIDARI A A, MAHDAVI H. Recent development of polyolefin-based microporous separators for Li-ion batteries: A review[J]. The Chemical Record,2020,20(6):570-595. doi: 10.1002/tcr.201900054
    [10]
    LAGADEC M F, ZAHN R, WOOD V. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy,2019,4(1):16-25.
    [11]
    肖伟, 巩亚群, 王红, 等. 锂离子电池隔膜技术进展[J]. 储能科学与技术, 2016, 5(2):188-196. doi: 10.3969/j.issn.2095-4239.2016.02.010

    XIAO Wei, GONG Yaqun, WANG Hong, et al. Research progress of separators for lithium-ion batteries[J]. Energy Storage Science and Technology,2016,5(2):188-196(in Chinese). doi: 10.3969/j.issn.2095-4239.2016.02.010
    [12]
    ZHANG X, SUN Q, ZHEN C, et al. Recent progress in flame-retardant separators for safe lithium-ion batteries[J]. Energy Storage Materials,2021,37:628-647. doi: 10.1016/j.ensm.2021.02.042
    [13]
    LI H, WU D, WU J, et al. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries[J]. Advanced Materials,2017,29(44):1703548. doi: 10.1002/adma.201703548
    [14]
    SUN G, KONG L, LIU B, et al. Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries[J]. Journal of Membrane Science,2019,582:132-139. doi: 10.1016/j.memsci.2019.04.005
    [15]
    KONG L, WANG Y, YU H, et al. In situ armoring: A robust, high-wettability, and fire-resistant hybrid separator for advanced and safe batteries[J]. ACS Applied Materials & Interfaces,2019,11(3):2978-2988. doi: 10.1021/acsami.8b17521
    [16]
    SHENG O, JIN C, LUO J, et al. Mg2B2O5 nanowire enabled multifunctional solid state electrolytes with high ionic conductivity, excellent mechanical properties, and flame retardant performance[J]. Nano Letters,2018,18(5):3104-3112. doi: 10.1021/acs.nanolett.8b00659
    [17]
    HAN Y Y, LIU B, XIAO Z, et al. Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives[J]. InfoMat,2021,3(2):155-174. doi: 10.1002/inf2.12166
    [18]
    YEON D, LEE Y, RYOU M H, et al. New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries[J]. Electrochimica Acta,2015,157:282-289. doi: 10.1016/j.electacta.2015.01.078
    [19]
    WANG T, SALVATIERRA R V, TOUR J M. Detecting Li dendrites in a two-electrode battery system[J]. Advanced Materials,2019,31(14):1807405. doi: 10.1002/adma.201807405
    [20]
    FU W, XU R, ZHANG X, et al. Enhanced wettability and electrochemical performance of separators for lithium-ion batteries by coating core-shell structured silica-poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) particles[J]. Journal of Power Sources,2019,436:226839. doi: 10.1016/j.jpowsour.2019.226839
    [21]
    ZHU J, BREU J, HOU H, et al. Gradient-structured nonflammable flexible polymer membranes[J]. ACS Applied Materials & Interfaces,2019,11(12):11876-11883.
    [22]
    LIU K, LIU W, QIU Y, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries[J]. Science Advances,2017,3(1):1601978. doi: 10.1126/sciadv.1601978
    [23]
    XIAO W, CHENG D, HUANG L, et al. An integrated separator/anode assembly based on electrospinning technique for advanced lithium-ion batteries[J]. Electrochimica Acta,2021,389:138776. doi: 10.1016/j.electacta.2021.138776
    [24]
    WEITKAMP R F, NEUMANN B, STAMMLER H G, et al. Phosphorus-containing superbases: Recent progress in the chemistry of electron-abundant phosphines and phosphazenes[J]. Chemistry A European Journal,2021,27(42):10807-10825. doi: 10.1002/chem.202101065
    [25]
    ZHANG J, HUANG X, WEI H, et al. Enhanced electrochemical properties of polyethylene oxide-based composite solid polymer electrolytes with porous inorganic-organic hybrid polyphosphazene nanotubes as fillers[J]. Journal of Solid State Electrochemistry,2012,16(1):101-107. doi: 10.1007/s10008-010-1278-3
    [26]
    TAO X, LI Y, WANG H, et al. Multi-heteroatom-doped dual carbon-confined Fe3O4 nanospheres as high-capacity and long-life anode materials for lithium/sodium ion batteries[J]. Journal of Colloid and Interface Science,2020,565:494-502. doi: 10.1016/j.jcis.2020.01.018
    [27]
    DUFEK E J, STONE M L, JAMISON D K, et al. Hybrid phosphazene anodes for energy storage applications[J]. Journal of Power Sources,2014,267:347-355. doi: 10.1016/j.jpowsour.2014.05.105
    [28]
    HAN H, MA H, YU J, et al. Preparation and performance of novel tetrapheneylphosphonium- functionalized polyphosphazene membranes for alkaline fuel cells[J]. European Polymer Journal,2019,114:109-117. doi: 10.1016/j.eurpolymj.2019.02.022
    [29]
    WEI X, ZHENG D, ZHAO M, et al. Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction[J]. Angewandte Chemie International Edition,2020,59(34):14639-14646. doi: 10.1002/anie.202006175
    [30]
    NI Z, YU H, WANG L, et al. Recent research progress on polyphosphazene-based drug delivery systems[J]. Journal of Materials Chemistry B,2020,8(8):1555-1575. doi: 10.1039/C9TB02517K
    [31]
    CHEN R, HUANG X, ZHENG R, et al. Flame-retardancy and thermal properties of a novel phosphorus-modified PCM for thermal energy storage[J]. Chemical Engineering Journal,2020,380:122500. doi: 10.1016/j.cej.2019.122500
    [32]
    ZHOU Z, CHEN F, WU L, et al. Heteroatoms-doped 3D carbon nanosphere cages embedded with MoS2 for lithium-ion battery[J]. Electrochimica Acta,2020,332:135490. doi: 10.1016/j.electacta.2019.135490
    [33]
    崔巍巍, 孟庆朋, 王振宇, 等. 大倍率高耐热聚醚酰亚胺-聚偏氟乙烯芯壳纳米纤维锂离子电池隔膜[J]. 复合材料学报, 2019, 36(1):69-76.

    CUI Weiwei, MENG Qingpeng, WANG Zhenyu, et al. A high rate and heat-resistant polyether imide-polyvinylidene fluoride core-shell nanofiber separator for lithium-ion battery[J]. Acta Materiae Compositae Sinica,2019,36(1):69-76(in Chinese).
    [34]
    CHEN X, XU H, LIU D, et al. A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites[J]. Applied Surface Science,2017,410:530-539. doi: 10.1016/j.apsusc.2017.03.104
    [35]
    LIU Y, WANG N, SUN Z, et al. Selective adsorption of malachite green (MG) and fuchsin acid (FA) by ZIF-67 hybridized polyvinylidene fluoride (PVDF) membranes[J]. Dalton Transactions,2021,50(25):8927-8937. doi: 10.1039/D1DT01000J
    [36]
    CHEN Z, FU J, WANG M, et al. Adsorption of cationic dye (methylene blue) from aqueous solution using poly (cyclotriphosphazene-co-4, 4′-sulfonyl-diphenol) nanospheres[J]. Applied Surface Science,2014,289:495-501. doi: 10.1016/j.apsusc.2013.11.022
    [37]
    LIU W, JIN J, HUANG X, et al. A facile strategy for the functionalization of poly [cyclotriphosphazene-co-(4, 4′-sulfonyldiphenol)] materials[J]. Polymer International,2010,59(9):1252-1257. doi: 10.1002/pi.2857
    [38]
    XU L, CHEN Y, LIU P, et al. Fabrication and investigation of PE-SiO2@PZS composite separator for lithium-ion batteries[J]. Materials,2022,15(14):4875. doi: 10.3390/ma15144875
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (281) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return