Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
CHEN Shizhan, HU Junshan, ZHANG Lin, et al. Repair performance of damaged aircraft metal structure with one-sided composite patch[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5903-5916. doi: 10.13801/j.cnki.fhclxb.20221226.003
Citation: CHEN Shizhan, HU Junshan, ZHANG Lin, et al. Repair performance of damaged aircraft metal structure with one-sided composite patch[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5903-5916. doi: 10.13801/j.cnki.fhclxb.20221226.003

Repair performance of damaged aircraft metal structure with one-sided composite patch

doi: 10.13801/j.cnki.fhclxb.20221226.003
Funds:  National Natural Science Foundation of China (52005259); China Postdoctoral Science Foundation (2022M720939)
  • Received Date: 2022-10-31
  • Accepted Date: 2022-12-04
  • Rev Recd Date: 2022-11-28
  • Available Online: 2022-12-27
  • Publish Date: 2023-10-15
  • For the repair structures of aircraft metal components with one-sided carbon fiber-reinforced polymer (CFRP) patches, the tensile tests on repair specimens with different repair processes (wet lay-up, prepreg and pre-curing methods) and CFRP patch parameters were carried out. The ultimate load, failure mode and interface of the specimens were observed. The three-dimensional (3D) finite element (FE) model had been established. Based on 3D Hashin failure criteria, the damage initiation and evolution in CFRP were simulated. The damages of the adhesive layer and delamination of CFRP were simulated with cohesive zone model. The FE model was validated by experimental and theoretical analysis. The results show that the three repair processes have different interface morphology and failure modes. The wet lay-up method has the best repair effect, 3.3 times of the pre-curing method and 1.3 times of the prepreg method. With the increase of patch thickness, the ultimate load first increases, then decreases, and finally tends to be stable. The failure mode gradually evolves from patch delamination, mixed failure of fiber breakage and adhesive layer damage to adhesive layer shear failure. The best patch thickness is 7 layers, about 1.05 mm in thickness. With the increase of patch length, the ultimate load first increases and then decreases linearly. The damage of the adhesive layer starts from the center and both ends of the joint and evolves to the middle region. The best patch length is 80 mm. The results reported herein could provide useful guidance for the application of aviation maintenance engineering.

     

  • loading
  • [1]
    宣善勇. 复合材料修理飞机金属结构技术的应用进展[J]. 化工新型材料, 2020, 48(11):227-229. doi: 10.19817/j.cnki.issn1006-3536.2020.11.050

    XUAN Shanyong. Process on boned repair of aircraft metallic structure applied by composite[J]. New Chemical Materials,2020,48(11):227-229(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2020.11.050
    [2]
    ABUSREA M R, ARAKAWA K. Improvement of an adhesive joint constructed from carbon fiber-reinforced plastic and dry carbon fiber laminates[J]. Composites Part B: Engineering,2016,97:368-373. doi: 10.1016/j.compositesb.2016.05.005
    [3]
    邓雅琼, 陈洋, 栗娜, 等. 三维编织复合材料与金属胶接结构的力学性能及优化[J]. 复合材料学报, 2018, 35(10):2760-2767. doi: 10.13801/j.cnki.fhclxb.20171219.001

    DENG Yaqiong, CHEN Yang, LI Na, et al. Mechanical properties and optimization adhesive structure of three-dimensional braided composites and metal[J]. Acta Materiae Compositae Sinica,2018,35(10):2760-2767(in Chinese). doi: 10.13801/j.cnki.fhclxb.20171219.001
    [4]
    KUMAR P, SHINDE P S, BHOYAR G. Fracture toughness and shear strength of the bonded interface between an aluminium alloy skin and a FRP patch[J]. Journal of the Institution of Engineers (India): Series C,2019,100:779-789. doi: 10.1007/s40032-018-0467-1
    [5]
    YANG C Q, WANG X L, JIAO Y J, et al. Linear strain sensing performance of continuous high strength carbon fiber reinforced polymer composites[J]. Composites Part B: Engineering,2016,102:86-93. doi: 10.1016/j.compositesb.2016.07.013
    [6]
    PURIMPAT S, JÉRÔME R, SHAHRAM A. Effect of fiber angle orientation on a laminated composite single-lap adhesive joint[J]. Advanced Composite Materials,2013,22(3):139-149. doi: 10.1080/09243046.2013.782805
    [7]
    NURPRASETIO I P, BUDIMAN B A, AZIZ M. Evaluation of bonding strength and fracture criterion for aluminum alloy-woven composite adhesive joint based on cohesive zone model[J]. International Journal of Adhesion and Adhesives,2018,85:193-201. doi: 10.1016/j.ijadhadh.2018.06.011
    [8]
    LIAO L J, SAWA T, HUANG C G. Numerical analysis on load-bearing capacity and damage of double scarf adhesive joints subjected to combined loadings of tension and bending[J]. International Journal of Adhesion and Adhesives,2014,53:65-71. doi: 10.1016/j.ijadhadh.2014.01.010
    [9]
    CHOUDHURY M R, DEBNATH K. Experimental analysis of tensile and compressive failure load in single-lap adhesive joint of green composites[J]. International Journal of Adhesion and Adhesives,2020,99:102557.
    [10]
    ZHAO L B, WANG Y N, QIN T L, et al. A new material model for 2D FE analysis of adhesively bonded composite joints[J]. Materials Science,2014,20(4):468-473.
    [11]
    RIBEIRO T E A, CAMPILHO R D S G, DA SILVA L F M, et al. Damage analysis of composite-aluminium adhesively-bonded single-lap joints[J]. Composite Structures,2016,136:25-33. doi: 10.1016/j.compstruct.2015.09.054
    [12]
    毛振刚, 侯玉亮, 李成, 等. 搭接长度和铺层方式对CFRP复合材料层合板胶接结构连接性能和损伤行为的影响[J]. 复合材料学报, 2020, 37(1):121-131. doi: 10.13801/j.cnki.fhclxb.20190308.001

    MAO Zhengang, HOU Yuliang, LI Cheng, et al. Effect of lap length and stacking sequence on strength and damage behaviors of adhesively bonded CFRP composite laminates[J]. Acta Materiae Compositae Sinica,2020,37(1):121-131(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190308.001
    [13]
    苗学周, 李成, 铁瑛, 等. 补片形状和尺寸对复合材料胶接修补的影响[J]. 机械工程学报, 2014, 50(20):63-69. doi: 10.3901/JME.2014.20.063

    MIAO Xuezhou, LI Cheng, TIE Ying, et al. Influence of patch shape and size on adhesively bonded composite repair[J]. Journal of Mechanical Engineering,2014,50(20):63-69(in Chinese). doi: 10.3901/JME.2014.20.063
    [14]
    孙运刚, 宣善勇, 贺旺. 复合材料湿法修理含裂纹铝板疲劳特性分析[J]. 化工新型材料, 2021, 49(11):198-201. doi: 10.19817/j.cnki.issn1006-3536.2021.11.041

    SUN Yungang, XUAN Shanyong, HE Wang. Fatigue characteristics analysis of cracked Al plate repaired by composite wet bonding[J]. New Chemical Materials,2021,49(11):198-201(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2021.11.041
    [15]
    王跃, 穆志韬, 刘治国. 复合材料单面修补板裂纹尖端J积分的解析预测模型[J]. 复合材料学报, 2018, 35(2):332-339. doi: 10.13801/j.cnki.fhclxb.20170327.002

    WANG Yue, MU Zhitao, LIU Zhiguo. Analytical model for prediction of J-internal of single-side-patched plates[J]. Acta Materiae Compositae Sinica,2018,35(2):332-339(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170327.002
    [16]
    SUN L G, LI C, TIE Y, et al. Experimental and numerical investigations of adhesively bonded CFRP single-lap joints subjected to tensile loads[J]. International Journal of Adhesion and Adhesives,2019,95:102402. doi: 10.1016/j.ijadhadh.2019.102402
    [17]
    FIELDEN-STEWART Z, COOPE T, BACHEVA D, et al. Effect of the surface morphology of SLM printed aluminium on the interfacial fracture toughness of metal-composite hybrid joints[J]. International Journal of Adhesion and Adhesives,2021,105:102779. doi: 10.1016/j.ijadhadh.2020.102779
    [18]
    DUONG C N, YU J. An analytical estimate of thermal effects in a composite bonded repair: Plane stress analysis[J]. International Journal of Solids and Structures,2002,39(4):1003-1014. doi: 10.1016/S0020-7683(01)00239-6
    [19]
    刘真航. SY-24中温固化胶接体系[J]. 中国胶粘剂, 2002, 11(1):1-5. doi: 10.3969/j.issn.1004-2849.2002.01.001

    LIU Zhenhang. SY-24 moderate temperature cured adhesive system[J]. China Adhesives,2002,11(1):1-5(in Chinese). doi: 10.3969/j.issn.1004-2849.2002.01.001
    [20]
    HOU Y L, TIE Y, LI C, et al. Low-velocity impact behaviors of repaired CFRP laminates: Effect of impact location and external patch configurations[J]. Composites Part B: Engineering,2019,163:669-680. doi: 10.1016/j.compositesb.2018.12.153
    [21]
    中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites—Determination of tension properties: GB/T 1447—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [22]
    HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47(2):329-334. doi: 10.1115/1.3153664
    [23]
    GUO S J, LI W H. Numerical analysis and experiment of sandwich T-joint structure reinforced by composite fasteners[J]. Composites Part B: Engineering,2020,199:108288. doi: 10.1016/j.compositesb.2020.108288
    [24]
    PINHO S T, IANNUCCI L, ROBINSON P. Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development[J]. Composites Part A: Applied Science and Manufacturing,2006,37(1):63-73. doi: 10.1016/j.compositesa.2005.04.016
    [25]
    GUO W, XUE P, YANG J. Nonlinear progressive damage model for composite laminates used for low-velocity impact[J]. Applied Mathematics and Mechanics,2013,34(9):1145-1154. doi: 10.1007/s10483-013-1733-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(3)

    Article Metrics

    Article views (641) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return